IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v146y2020icp2827-2839.html
   My bibliography  Save this article

Onshore wind farm siting prioritization based on investment profitability for Greece

Author

Listed:
  • Sakka, Evelyn G.
  • Bilionis, Dimitrios V.
  • Vamvatsikos, Dimitrios
  • Gantes, Charis J.

Abstract

A feasibility study is presented on mid-size onshore wind farms in Greece, taking into consideration two metrics for the evaluation of the profitability of the pertinent investment, namely the net present value, and the internal rate of return. An operationally complete wind park of ten 3.2 MW turbines is considered, incorporating all required power conversion/transmission, and transportation infrastructure that an owner would have to construct. Actual wind speed data are employed from 285 weather stations installed throughout the country and covering a period of 1 to 12 years. The costs of installation, operation, and financing are explicitly accounted for over a standard lifecycle of twenty years. Given the regulated wholesale price for renewable electrical power, the proximity of many sites to ports, and the relatively uniform cost of investing, it is the wind potential that remains the governing factor affecting the financial viability of the wind park. Accordingly, the most profitable areas are the Aegean islands, the south-central mainland coastline, east Peloponnese, and south Attica. Most other regions of mainland Greece are found to be either marginally profitable or to generate a net loss given the current wholesale prices, wind turbine technology and investment costs.

Suggested Citation

  • Sakka, Evelyn G. & Bilionis, Dimitrios V. & Vamvatsikos, Dimitrios & Gantes, Charis J., 2020. "Onshore wind farm siting prioritization based on investment profitability for Greece," Renewable Energy, Elsevier, vol. 146(C), pages 2827-2839.
  • Handle: RePEc:eee:renene:v:146:y:2020:i:c:p:2827-2839
    DOI: 10.1016/j.renene.2019.08.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119312078
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.08.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Albadi, M.H. & El-Saadany, E.F. & Albadi, H.A., 2009. "Wind to power a new city in Oman," Energy, Elsevier, vol. 34(10), pages 1579-1586.
    2. Oikonomou, Emmanouil K. & Kilias, Vassilios & Goumas, Aggelos & Rigopoulos, Alexandrous & Karakatsani, Eirini & Damasiotis, Markos & Papastefanakis, Dimitrios & Marini, Natassa, 2009. "Renewable energy sources (RES) projects and their barriers on a regional scale: The case study of wind parks in the Dodecanese islands, Greece," Energy Policy, Elsevier, vol. 37(11), pages 4874-4883, November.
    3. Jamil, M. & Parsa, S. & Majidi, M., 1995. "Wind power statistics and an evaluation of wind energy density," Renewable Energy, Elsevier, vol. 6(5), pages 623-628.
    4. Fyrippis, Ioannis & Axaopoulos, Petros J. & Panayiotou, Gregoris, 2010. "Wind energy potential assessment in Naxos Island, Greece," Applied Energy, Elsevier, vol. 87(2), pages 577-586, February.
    5. Vogiatzis, N. & Kotti, K. & Spanomitsios, S. & Stoukides, M., 2004. "Analysis of wind potential and characteristics in North Aegean, Greece," Renewable Energy, Elsevier, vol. 29(7), pages 1193-1208.
    6. Lun, Isaac Y.F & Lam, Joseph C, 2000. "A study of Weibull parameters using long-term wind observations," Renewable Energy, Elsevier, vol. 20(2), pages 145-153.
    7. Xydis, George, 2013. "A techno-economic and spatial analysis for the optimal planning of wind energy in Kythira island, Greece," International Journal of Production Economics, Elsevier, vol. 146(2), pages 440-452.
    8. Hamouda, Yasmina Abdellatif, 2012. "Wind energy in Egypt: Economic feasibility for Cairo," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3312-3319.
    9. Dimitrios Angelopoulos & Robert Brückmann & Filip JirouÅ¡ & Inga KonstantinaviÄ iÅ«tÄ— & Paul Noothout & John Psarras & Lucie Tesnière & Barbara Breitschopf, 2016. "Risks and cost of capital for onshore wind energy investments in EU countries," Energy & Environment, , vol. 27(1), pages 82-104, February.
    10. Voivontas, D. & Assimacopoulos, D. & Mourelatos, A. & Corominas, J., 1998. "Evaluation of Renewable Energy potential using a GIS decision support system," Renewable Energy, Elsevier, vol. 13(3), pages 333-344.
    11. Kaldellis, J. K., 2002. "Optimum autonomous wind-power system sizing for remote consumers, using long-term wind speed data," Applied Energy, Elsevier, vol. 71(3), pages 215-233, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gasparini, Gaia & Brunelli, Matteo & Chiriac, Marius Dan, 2022. "Multi-period portfolio decision analysis: A case study in the infrastructure management sector," Operations Research Perspectives, Elsevier, vol. 9(C).
    2. Justyna Zalewska & Krzysztof Damaziak & Jerzy Malachowski, 2021. "An Energy Efficiency Estimation Procedure for Small Wind Turbines at Chosen Locations in Poland," Energies, MDPI, vol. 14(12), pages 1-18, June.
    3. Adam Zagubień & Katarzyna Wolniewicz, 2022. "Energy Efficiency of Small Wind Turbines in an Urbanized Area—Case Studies," Energies, MDPI, vol. 15(14), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Islam, M.R. & Saidur, R. & Rahim, N.A., 2011. "Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution function," Energy, Elsevier, vol. 36(2), pages 985-992.
    2. El Alimi, Souheil & Maatallah, Taher & Dahmouni, Anouar Wajdi & Ben Nasrallah, Sassi, 2012. "Modeling and investigation of the wind resource in the gulf of Tunis, Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5466-5478.
    3. Fyrippis, Ioannis & Axaopoulos, Petros J. & Panayiotou, Gregoris, 2010. "Wind energy potential assessment in Naxos Island, Greece," Applied Energy, Elsevier, vol. 87(2), pages 577-586, February.
    4. Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
    5. Murthy, K.S.R. & Rahi, O.P., 2017. "A comprehensive review of wind resource assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1320-1342.
    6. Kougias, Ioannis & Szabó, Sándor & Nikitas, Alexandros & Theodossiou, Nicolaos, 2019. "Sustainable energy modelling of non-interconnected Mediterranean islands," Renewable Energy, Elsevier, vol. 133(C), pages 930-940.
    7. Diaf, S. & Notton, G., 2013. "Technical and economic analysis of large-scale wind energy conversion systems in Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 37-51.
    8. George Xydis, 2015. "Wind Energy Integration through District Heating. A Wind Resource Based Approach," Resources, MDPI, vol. 4(1), pages 1-18, March.
    9. Kaldellis, J.K. & Kavadias, K.A. & Filios, A.E., 2009. "A new computational algorithm for the calculation of maximum wind energy penetration in autonomous electrical generation systems," Applied Energy, Elsevier, vol. 86(7-8), pages 1011-1023, July.
    10. Shu, Z.R. & Li, Q.S. & Chan, P.W., 2015. "Investigation of offshore wind energy potential in Hong Kong based on Weibull distribution function," Applied Energy, Elsevier, vol. 156(C), pages 362-373.
    11. Xydis, George A. & Nanaki, Evanthia A. & Koroneos, Christopher J., 2013. "Low-enthalpy geothermal resources for electricity production: A demand-side management study for intelligent communities," Energy Policy, Elsevier, vol. 62(C), pages 118-123.
    12. Dimitris Al. Katsaprakakis & Antonia Proka & Dimitris Zafirakis & Markos Damasiotis & Panos Kotsampopoulos & Nikos Hatziargyriou & Eirini Dakanali & George Arnaoutakis & Dimitrios Xevgenos, 2022. "Greek Islands’ Energy Transition: From Lighthouse Projects to the Emergence of Energy Communities," Energies, MDPI, vol. 15(16), pages 1-34, August.
    13. Ahmed Shata, A.S. & Hanitsch, R., 2006. "Evaluation of wind energy potential and electricity generation on the coast of Mediterranean Sea in Egypt," Renewable Energy, Elsevier, vol. 31(8), pages 1183-1202.
    14. Latinopoulos, D. & Kechagia, K., 2015. "A GIS-based multi-criteria evaluation for wind farm site selection. A regional scale application in Greece," Renewable Energy, Elsevier, vol. 78(C), pages 550-560.
    15. Jianxing Yu & Yiqin Fu & Yang Yu & Shibo Wu & Yuanda Wu & Minjie You & Shuai Guo & Mu Li, 2019. "Assessment of Offshore Wind Characteristics and Wind Energy Potential in Bohai Bay, China," Energies, MDPI, vol. 12(15), pages 1-19, July.
    16. Wais, Piotr, 2017. "A review of Weibull functions in wind sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1099-1107.
    17. Lepore, Antonio & Palumbo, Biagio & Pievatolo, Antonio, 2020. "A Bayesian approach for site-specific wind rose prediction," Renewable Energy, Elsevier, vol. 150(C), pages 691-702.
    18. Mahbudi, Shahrbanoo & Jamalizadeh, Ahad & Farnoosh, Rahman, 2020. "Use of finite mixture models with skew-t-normal Birnbaum-Saunders components in the analysis of wind speed: Case studies in Ontario, Canada," Renewable Energy, Elsevier, vol. 162(C), pages 196-211.
    19. Chang, Tian Pau, 2011. "Estimation of wind energy potential using different probability density functions," Applied Energy, Elsevier, vol. 88(5), pages 1848-1856, May.
    20. Sergei Kolesnik & Yossi Rabinovitz & Michael Byalsky & Asher Yahalom & Alon Kuperman, 2023. "Assessment of Wind Speed Statistics in Samaria Region and Potential Energy Production," Energies, MDPI, vol. 16(9), pages 1-35, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:146:y:2020:i:c:p:2827-2839. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.