IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v146y2020icp1232-1241.html
   My bibliography  Save this article

The ground impact on the ultra-low- and low-temperature district heating operation

Author

Listed:
  • Dolna, Oktawia
  • Mikielewicz, Jarosław

Abstract

According to the latest trends in the district heating field, new technologies and solutions are being implemented aiming at lower heating medium supply temperature introduction. This paper presents the implementation the Ultra-Low- and Low-Temperature District Heating (UL-L- TDH) and the ground thermal energy storage (GTES). The GTES is localised in the UL-L- TDH distribution pipes surrounding. In the paper there have been estimated the internal and external thermal energy balances of a system including the heat supplier, the heat consumer and the UL-L- TDH distribution pipes. A simple mathematical model of the system mentioned above was prepared and solved numerically using Mathcad environment. Additionally, CFD studies have been carried out to visualise the temperature field in the GTES. Accordingly, the influence of the GTES on the Ultra-Low- and Low-Temperature District Heating operation was estimated. Additionally, basing on the CFD results the proper supply/return mutual distance was defined.

Suggested Citation

  • Dolna, Oktawia & Mikielewicz, Jarosław, 2020. "The ground impact on the ultra-low- and low-temperature district heating operation," Renewable Energy, Elsevier, vol. 146(C), pages 1232-1241.
  • Handle: RePEc:eee:renene:v:146:y:2020:i:c:p:1232-1241
    DOI: 10.1016/j.renene.2019.07.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119310687
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.07.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Persson, Urban & Werner, Sven, 2011. "Heat distribution and the future competitiveness of district heating," Applied Energy, Elsevier, vol. 88(3), pages 568-576, March.
    2. Brand, Marek & Thorsen, Jan Eric & Svendsen, Svend, 2012. "Numerical modelling and experimental measurements for a low-temperature district heating substation for instantaneous preparation of DHW with respect to service pipes," Energy, Elsevier, vol. 41(1), pages 392-400.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Qian & Wang, Kang & Zou, Zhenwei & Zhong, Liqiong & Akkurt, Nevzat & Feng, Junxiao & Xiong, Yaxuan & Han, Jingxiao & Wang, Jiulong & Du, Yanping, 2021. "A new type of two-supply, one-return, triple pipe-structured heat loss model based on a low temperature district heating system," Energy, Elsevier, vol. 218(C).
    2. Dolna, Oktawia, 2021. "Operation of a ground thermal energy storage supplied by different sources in a low-temperature district heating network," Renewable Energy, Elsevier, vol. 180(C), pages 586-604.
    3. Quirosa, Gonzalo & Torres, Miguel & Becerra, José A. & Jiménez-Espadafor, Francisco J. & Chacartegui, Ricardo, 2023. "Energy analysis of an ultra-low temperature district heating and cooling system with coaxial borehole heat exchangers," Energy, Elsevier, vol. 278(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    2. Li, Yu & Rezgui, Yacine & Zhu, Hanxing, 2017. "District heating and cooling optimization and enhancement – Towards integration of renewables, storage and smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 281-294.
    3. Averfalk, Helge & Werner, Sven, 2018. "Novel low temperature heat distribution technology," Energy, Elsevier, vol. 145(C), pages 526-539.
    4. Hakan İbrahim Tol & Svend Svendsen, 2013. "The Exergetic, Environmental and Economic Effect of the Hydrostatic Design Static Pressure Level on the Pipe Dimensions of Low-Energy District Heating Networks," Challenges, MDPI, vol. 4(1), pages 1-16, January.
    5. Nielsen, Steffen, 2014. "A geographic method for high resolution spatial heat planning," Energy, Elsevier, vol. 67(C), pages 351-362.
    6. Wang, Peng & Sipilä, Kari, 2016. "Energy-consumption and economic analysis of group and building substation systems — A case study of the reformation of the district heating system in China," Renewable Energy, Elsevier, vol. 87(P3), pages 1139-1147.
    7. Brand, Marek & Thorsen, Jan Eric & Svendsen, Svend, 2012. "Numerical modelling and experimental measurements for a low-temperature district heating substation for instantaneous preparation of DHW with respect to service pipes," Energy, Elsevier, vol. 41(1), pages 392-400.
    8. Shirizadeh, Behrang & Quirion, Philippe, 2022. "The importance of renewable gas in achieving carbon-neutrality: Insights from an energy system optimization model," Energy, Elsevier, vol. 255(C).
    9. Vandermeulen, Annelies & Van Oevelen, Tijs & van der Heijde, Bram & Helsen, Lieve, 2020. "A simulation-based evaluation of substation models for network flexibility characterisation in district heating networks," Energy, Elsevier, vol. 201(C).
    10. Truong, Nguyen Le & Dodoo, Ambrose & Gustavsson, Leif, 2018. "Effects of energy efficiency measures in district-heated buildings on energy supply," Energy, Elsevier, vol. 142(C), pages 1114-1127.
    11. M. M. Sarafraz & Alireza Dareh Baghi & Mohammad Reza Safaei & Arturo S. Leon & R. Ghomashchi & Marjan Goodarzi & Cheng-Xian Lin, 2019. "Assessment of Iron Oxide (III)–Therminol 66 Nanofluid as a Novel Working Fluid in a Convective Radiator Heating System for Buildings," Energies, MDPI, vol. 12(22), pages 1-13, November.
    12. Bracco, Stefano & Delfino, Federico & Pampararo, Fabio & Robba, Michela & Rossi, Mansueto, 2013. "The University of Genoa smart polygeneration microgrid test-bed facility: The overall system, the technologies and the research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 442-459.
    13. Zhang, Lipeng & Gudmundsson, Oddgeir & Thorsen, Jan Eric & Li, Hongwei & Li, Xiaopeng & Svendsen, Svend, 2016. "Method for reducing excess heat supply experienced in typical Chinese district heating systems by achieving hydraulic balance and improving indoor air temperature control at the building level," Energy, Elsevier, vol. 107(C), pages 431-442.
    14. Florin Iov & Mahmood Khatibi & Jan Dimon Bendtsen, 2020. "On the Participation of Power-To-Heat Assets in Frequency Regulation Markets—A Danish Case Study," Energies, MDPI, vol. 13(18), pages 1-22, September.
    15. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    16. Meesenburg, Wiebke & Ommen, Torben & Thorsen, Jan Eric & Elmegaard, Brian, 2020. "Economic feasibility of ultra-low temperature district heating systems in newly built areas supplied by renewable energy," Energy, Elsevier, vol. 191(C).
    17. Shabanpour-Haghighi, Amin & Seifi, Ali Reza, 2016. "Effects of district heating networks on optimal energy flow of multi-carrier systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 379-387.
    18. Sun, Jian & Fu, Lin & Sun, Fangtian & Zhang, Shigang, 2014. "Study on a heat recovery system for the thermal power plant utilizing air cooling island," Energy, Elsevier, vol. 74(C), pages 836-844.
    19. Ramos-Teodoro, Jerónimo & Álvarez, José Domingo & Torres, José Luis, 2024. "A methodology for feasibility analyses of district heating networks: A case study applied to greenhouse crops," Energy, Elsevier, vol. 301(C).
    20. Ommen, Torben & Thorsen, Jan Eric & Markussen, Wiebke Brix & Elmegaard, Brian, 2017. "Performance of ultra low temperature district heating systems with utility plant and booster heat pumps," Energy, Elsevier, vol. 137(C), pages 544-555.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:146:y:2020:i:c:p:1232-1241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.