IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v145y2020icp757-771.html
   My bibliography  Save this article

Simulation of eco-friendly and affordable energy production via solid oxide fuel cell integrated with biomass gasification plant using various gasification agents

Author

Listed:
  • Hosseinpour, Javad
  • Chitsaz, Ata
  • Liu, Lin
  • Gao, Yang

Abstract

There has been huge attention has been given to renewable energy resources including biomass, to meet the sustainable energy production plans. As one of the first systematic studies, biomass gasification integrated internal reforming solid oxide fuel cell (SOFC) plant is designed and fed by municipal solid waste (MSW) using four different gasification agents including air (case 1), oxygen-enriched air (case 2), oxygen (case 3) and steam (case 4). Tubular SOFC in the atmospheric pressure is considered in a combined heat and power (CHP) system here. The four cases above are simulated, assessed and compared through energy, exergy, environmental and exergoeconomic analyses to identify the best case scenario. Thereby, the influence of varying several key parameters on the performance of the cases are studied. It is found that, oxygen blown plant (case 3) has the exergy efficiency of 43.6% after optimization which is 0.64%, 10.88% and 19.33% higher than cases 4, 2 and 1, respectively. The total exergy unit cost of the products for oxygen blown case is 3.02 cent/kWh, makes it cost efficient case in comparison to other cases. Moreover, it is observed that the exergy destruction rate of gasification reactor as a main irreversible component decreases while moving from case 1 to 4. Besides, case 3 is the most environmentally-friendly option due to lower emission damage cost. Current contribution clearly exhibits the superiority of alternative gasification agents over conventional one.

Suggested Citation

  • Hosseinpour, Javad & Chitsaz, Ata & Liu, Lin & Gao, Yang, 2020. "Simulation of eco-friendly and affordable energy production via solid oxide fuel cell integrated with biomass gasification plant using various gasification agents," Renewable Energy, Elsevier, vol. 145(C), pages 757-771.
  • Handle: RePEc:eee:renene:v:145:y:2020:i:c:p:757-771
    DOI: 10.1016/j.renene.2019.06.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119308559
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.06.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amiri, Hamed & Sotoodeh, Amir Farhang & Amidpour, Majid, 2021. "A new combined heating and power system driven by biomass for total-site utility applications," Renewable Energy, Elsevier, vol. 163(C), pages 1138-1152.
    2. Teng, Su & Hamrang, Farzad & Ashraf Talesh, Seyed Saman, 2021. "Economic performance assessment of a novel combined power generation cycle," Energy, Elsevier, vol. 231(C).
    3. Chen, Yi & Niroumandi, Hossein & Duan, Yinying, 2021. "Thermodynamic and economic analyses of a syngas-fueled high-temperature fuel cell with recycling processes in novel electricity and freshwater cogeneration plant," Energy, Elsevier, vol. 235(C).
    4. Zhang, Xiaofeng & Liu, Wenjing & Pan, Jinjun & Zhao, Bin & Yi, Zhengyuan & He, Xu & Liu, Yuting & Li, Hongqiang, 2024. "Comprehensive performance assessment of a novel biomass-based CCHP system integrated with SOFC and HT-PEMFC," Energy, Elsevier, vol. 295(C).
    5. Alirahmi, Seyed Mojtaba & Ebrahimi-Moghadam, Amir, 2022. "Comparative study, working fluid selection, and optimal design of three systems for electricity and freshwater based on solid oxide fuel cell mover cycle," Applied Energy, Elsevier, vol. 323(C).
    6. Cheng, Cai & Cherian, Jacob & Sial, Muhammad Safdar & Zaman, Umer & Niroumandi, Hosein, 2021. "Performance assessment of a novel biomass-based solid oxide fuel cell power generation cycle; Economic analysis and optimization," Energy, Elsevier, vol. 224(C).
    7. Roy, Dibyendu & Samanta, Samiran & Roy, Sumit & Smallbone, Andrew & Paul Roskilly, Anthony, 2023. "Fuel cell integrated carbon negative power generation from biomass," Applied Energy, Elsevier, vol. 331(C).
    8. Luqing Zhang & Aikang Chen & Han Gu & Xitian Wang & Da Xie & Chenghong Gu, 2019. "Planning of the Multi-Energy Circular System Coupled with Waste Processing Base: A Case from China," Energies, MDPI, vol. 12(20), pages 1-17, October.
    9. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    10. Wang, Shicheng & Liu, Xin & Gu, Xueying & Huang, Xinyu & Li, Yu, 2023. "Analysis and multi-objective optimization of integrating a syngas-fed solid oxide fuel cell improved by a two-stage expander-organic flash cycle using an ejector and a desalination cycle," Energy, Elsevier, vol. 272(C).
    11. Habibollahzade, Ali & Rosen, Marc A., 2021. "Syngas-fueled solid oxide fuel cell functionality improvement through appropriate feedstock selection and multi-criteria optimization using Air/O2-enriched-air gasification agents," Applied Energy, Elsevier, vol. 286(C).
    12. Roy, Dibyendu, 2023. "Multi-objective optimization of biomass gasification based combined heat and power system employing molten carbonate fuel cell and externally fired gas turbine," Applied Energy, Elsevier, vol. 348(C).
    13. Yang Gao & Changhong Liu & Yuan Liang & Sadegh Kouhestani Hamed & Fuwei Wang & Bo Bi, 2022. "Minimizing Energy Consumption and Powertrain Cost of Fuel Cell Hybrid Vehicles with Consideration of Different Driving Cycles and SOC Ranges," Energies, MDPI, vol. 15(17), pages 1-12, August.
    14. Roy, Dibyendu & Samanta, Samiran, 2024. "A solar-assisted power-to-hydrogen system based on proton-conducting solid oxide electrolyzer cells," Renewable Energy, Elsevier, vol. 220(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:145:y:2020:i:c:p:757-771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.