IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v145y2020icp671-681.html
   My bibliography  Save this article

Parametric analysis and optimization for the catalytic air gasification of palm kernel shell using coal bottom ash as catalyst

Author

Listed:
  • Inayat, Abrar
  • Inayat, Muddasser
  • Shahbaz, Muhammad
  • Sulaiman, Shaharin A.
  • Raza, Mohsin
  • Yusup, Suzana

Abstract

The air gasification of palm waste specifically palm kernel shell has been performed in the fixed bed gasifier using coal bottom ash as a potential catalyst. Effect of the process variables (temperature, catalyst loading, and airflow rate) has been investigated on the product gas composition. The design of experiments was accomplished using the Design Expert v11® with a Central Composite Design approach. Moreover, the parametric study and optimization of the entire process have been carried out using Response Surface Methodology within the specific range of variables. The results suggested that the temperature has been found as the most influencing parameter for increment of H2 and CO production. Whereas, airflow rate was more sensitive for CH4 and CO2 production. Catalyst loading was found very effective for the amplified amount of H2 and CO production and the reduction in the amounts of CO2 and CH4, caused by the catalytic activity of coal bottom ash (CBA). Optimized parameters are found to be the temperature of 850 °C, catalyst loading of 14.50 wt%, and airflow rate of 2.50 L/min, which predicted the composition for H2 of 31.38 vol%, CO of 26.44 vol%, CH4 of 15.67 vol%, and CO2 of 25.59 vol%.

Suggested Citation

  • Inayat, Abrar & Inayat, Muddasser & Shahbaz, Muhammad & Sulaiman, Shaharin A. & Raza, Mohsin & Yusup, Suzana, 2020. "Parametric analysis and optimization for the catalytic air gasification of palm kernel shell using coal bottom ash as catalyst," Renewable Energy, Elsevier, vol. 145(C), pages 671-681.
  • Handle: RePEc:eee:renene:v:145:y:2020:i:c:p:671-681
    DOI: 10.1016/j.renene.2019.06.104
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119309383
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.06.104?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sara Maen Asaad & Abrar Inayat & Farrukh Jamil & Chaouki Ghenai & Abdallah Shanableh, 2023. "Optimization of Biodiesel Production from Waste Cooking Oil Using a Green Catalyst Prepared from Glass Waste and Animal Bones," Energies, MDPI, vol. 16(5), pages 1-13, February.
    2. Mohsin Raza & Abrar Inayat & Basim Abu-Jdayil, 2021. "Crude Glycerol as a Potential Feedstock for Future Energy via Thermochemical Conversion Processes: A Review," Sustainability, MDPI, vol. 13(22), pages 1-27, November.
    3. Li, Jie & Chang, Guozhang & Song, Ke & Hao, Bolun & Wang, Cuiping & Zhang, Jian & Yue, Guangxi & Hu, Shugang, 2023. "Influence of coal bottom ash additives on catalytic reforming of biomass pyrolysis gaseous tar and biochar/steam gasification reactivity," Renewable Energy, Elsevier, vol. 203(C), pages 434-444.
    4. Rezk, Hegazy & Inayat, Abrar & Abdelkareem, Mohammad A. & Olabi, Abdul G. & Nassef, Ahmed M., 2022. "Optimal operating parameter determination based on fuzzy logic modeling and marine predators algorithm approaches to improve the methane production via biomass gasification," Energy, Elsevier, vol. 239(PB).
    5. Shahbaz, Muhammad & Al-Ansari, Tareq & Inayat, Muddasser & Sulaiman, Shaharin A. & Parthasarathy, Prakash & McKay, Gordon, 2020. "A critical review on the influence of process parameters in catalytic co-gasification: Current performance and challenges for a future prospectus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Li, Shouzhuang & Inayat, Muddasser & Järvinen, Mika, 2023. "Steam gasification of polyethylene terephthalate (PET) with CaO in a bubbling fluidized bed gasifier for enriching H2 in syngas with Response Surface Methodology (RSM)," Applied Energy, Elsevier, vol. 348(C).
    7. Syakirah Afiza Mohammed & Suhana Koting & Herda Yati Binti Katman & Ali Mohammed Babalghaith & Muhamad Fazly Abdul Patah & Mohd Rasdan Ibrahim & Mohamed Rehan Karim, 2021. "A Review of the Utilization of Coal Bottom Ash (CBA) in the Construction Industry," Sustainability, MDPI, vol. 13(14), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:145:y:2020:i:c:p:671-681. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.