IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v145y2020icp2201-2216.html
   My bibliography  Save this article

Current limiter circuit to avoid photovoltaic mismatch conditions including hot-spots and shading

Author

Listed:
  • Dhimish, Mahmoud
  • Badran, Ghadeer

Abstract

Photovoltaic (PV) hot-spots are considered as one of the main reliability issues for PV modules. Although PV modules are capable to tolerate over-temperature, the hot-spots can lead to accelerated aging and, sometimes, to sudden failure with possible risk to fire. The common-practise for mitigating this phenomenon is the adoption of the conventional bypass diode circuit, yet, this method does not guarantee a decrease in the temperature of hot-spotted solar cell. Therefore, in this paper, we present the development of a new current limiter circuit that is capable of mitigating the current flow of PV modules affected by mismatch conditions including partial shading and hot-spotting phenomenon. The foundation of the proposed circuit is fundamentally based on an input buffer which allows high impedance input voltages, and an operational amplifier circuit which controls the current flow of an integrated MOSFETs. Hence, to allow the control of the amount of current passing though mismatched PV sub-strings, and therefore, increase the output power generation. Detailed circuit simulations and multiple experiments are presented to evidence the capability of the circuit. In contrast, the average dissipated power of the circuit is limited to 0.53 W.

Suggested Citation

  • Dhimish, Mahmoud & Badran, Ghadeer, 2020. "Current limiter circuit to avoid photovoltaic mismatch conditions including hot-spots and shading," Renewable Energy, Elsevier, vol. 145(C), pages 2201-2216.
  • Handle: RePEc:eee:renene:v:145:y:2020:i:c:p:2201-2216
    DOI: 10.1016/j.renene.2019.07.156
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119311760
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.07.156?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dhimish, Mahmoud & Ahmad, Ameer & Tyrrell, Andy M., 2022. "Inequalities in photovoltaics modules reliability: From packaging to PV installation site," Renewable Energy, Elsevier, vol. 192(C), pages 805-814.
    2. Huang, Pengluan & Hu, Guoqiang & Zhao, Xiaodong & Lu, Luyi & Ding, Honggang & Li, Jianlan, 2022. "Effect of organics on the adhesion of dust to PV panel surfaces under condensation," Energy, Elsevier, vol. 261(PB).
    3. Tuhibur Rahman & Ahmed Al Mansur & Molla Shahadat Hossain Lipu & Md. Siddikur Rahman & Ratil H. Ashique & Mohamad Abou Houran & Rajvikram Madurai Elavarasan & Eklas Hossain, 2023. "Investigation of Degradation of Solar Photovoltaics: A Review of Aging Factors, Impacts, and Future Directions toward Sustainable Energy Management," Energies, MDPI, vol. 16(9), pages 1-30, April.
    4. Koo Lee & Sung Bae Cho & Junsin Yi & Hyo Sik Chang, 2022. "Simplified Recovery Process for Resistive Solder Bond (RSB) Hotspots Caused by Poor Soldering of Crystalline Silicon Photovoltaic Modules Using Resin," Energies, MDPI, vol. 15(13), pages 1-19, June.
    5. Romênia G. Vieira & Fábio M. U. de Araújo & Mahmoud Dhimish & Maria I. S. Guerra, 2020. "A Comprehensive Review on Bypass Diode Application on Photovoltaic Modules," Energies, MDPI, vol. 13(10), pages 1-21, May.
    6. Anupama Ganguly & Pabitra Kumar Biswas & Chiranjit Sain & Ahmad Taher Azar & Ahmed Redha Mahlous & Saim Ahmed, 2023. "Horse Herd Optimized Intelligent Controller for Sustainable PV Interface Grid-Connected System: A Qualitative Approach," Sustainability, MDPI, vol. 15(14), pages 1-26, July.
    7. Ramadoss Janarthanan & R. Uma Maheshwari & Prashant Kumar Shukla & Piyush Kumar Shukla & Seyedali Mirjalili & Manoj Kumar, 2021. "Intelligent Detection of the PV Faults Based on Artificial Neural Network and Type 2 Fuzzy Systems," Energies, MDPI, vol. 14(20), pages 1-19, October.
    8. Mirza, Adeel Feroz & Mansoor, Majad & Zhan, Keyu & Ling, Qiang, 2021. "High-efficiency swarm intelligent maximum power point tracking control techniques for varying temperature and irradiance," Energy, Elsevier, vol. 228(C).
    9. Mahmoud Dhimish, 2020. "Performance Ratio and Degradation Rate Analysis of 10-Year Field Exposed Residential Photovoltaic Installations in the UK and Ireland," Clean Technol., MDPI, vol. 2(2), pages 1-14, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:145:y:2020:i:c:p:2201-2216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.