Assessment of Deep Learning techniques for Prognosis of solar thermal systems
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2019.07.100
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ruiz-Moreno, Sara & Gallego, Antonio J. & Sanchez, Adolfo J. & Camacho, Eduardo F., 2023. "A cascade neural network methodology for fault detection and diagnosis in solar thermal plants," Renewable Energy, Elsevier, vol. 211(C), pages 76-86.
- Gil, Juan D. & Topa, A. & Álvarez, J.D. & Torres, J.L. & Pérez, M., 2022. "A review from design to control of solar systems for supplying heat in industrial process applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
- Camila Correa-Jullian & Sergio Cofre-Martel & Gabriel San Martin & Enrique Lopez Droguett & Gustavo de Novaes Pires Leite & Alexandre Costa, 2022. "Exploring Quantum Machine Learning and Feature Reduction Techniques for Wind Turbine Pitch Fault Detection," Energies, MDPI, vol. 15(8), pages 1-29, April.
- Rana, Mashud & Sethuvenkatraman, Subbu & Heidari, Rahmat & Hands, Stuart, 2022. "Solar thermal generation forecast via deep learning and application to buildings cooling system control," Renewable Energy, Elsevier, vol. 196(C), pages 694-706.
- Marek Vochozka & Jaromir Vrbka & Petr Suler, 2020. "Bankruptcy or Success? The Effective Prediction of a Company’s Financial Development Using LSTM," Sustainability, MDPI, vol. 12(18), pages 1-17, September.
- Unterberger, Viktor & Lichtenegger, Klaus & Kaisermayer, Valentin & Gölles, Markus & Horn, Martin, 2021. "An adaptive short-term forecasting method for the energy yield of flat-plate solar collector systems," Applied Energy, Elsevier, vol. 293(C).
- Noman Khan & Fath U Min Ullah & Ijaz Ul Haq & Samee Ullah Khan & Mi Young Lee & Sung Wook Baik, 2021. "AB-Net: A Novel Deep Learning Assisted Framework for Renewable Energy Generation Forecasting," Mathematics, MDPI, vol. 9(19), pages 1-18, October.
- Lu, Yunbo & Wang, Lunche & Zhu, Canming & Zou, Ling & Zhang, Ming & Feng, Lan & Cao, Qian, 2023. "Predicting surface solar radiation using a hybrid radiative Transfer–Machine learning model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
- Correa-Jullian, Camila & López Droguett, Enrique & Cardemil, José Miguel, 2020. "Operation scheduling in a solar thermal system: A reinforcement learning-based framework," Applied Energy, Elsevier, vol. 268(C).
- Hugo Gaspar Hernandez-Palma & Vladimir Sousa Santos & Adalberto Ospino Castro & Angélica Jiménez Coronado & Roberto Morales Espinoza & Jonny Rafael Plazas Alvarado, 2024. "Sustainable Projects Based on the Intersection of Clean Energy with the Health Sector: A Bibliometric Review," International Journal of Energy Economics and Policy, Econjournals, vol. 14(3), pages 489-496, May.
- Rigby, Aidan & Baker, Una & Lindley, Benjamin & Wagner, Michael, 2024. "Generation and validation of comprehensive synthetic weather histories using auto-regressive moving-average models," Renewable Energy, Elsevier, vol. 224(C).
- Ruan, Zhaohui & Sun, Weiwei & Yuan, Yuan & Tan, Heping, 2023. "Accurately forecasting solar radiation distribution at both spatial and temporal dimensions simultaneously with fully-convolutional deep neural network model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
- Lillo-Bravo, I. & Vera-Medina, J. & Fernandez-Peruchena, C. & Perez-Aparicio, E. & Lopez-Alvarez, J.A. & Delgado-Sanchez, J.M., 2023. "Random Forest model to predict solar water heating system performance," Renewable Energy, Elsevier, vol. 216(C).
- Ruiz-Moreno, Sara & Sanchez, Adolfo J. & Gallego, Antonio J. & Camacho, Eduardo F., 2022. "A deep learning-based strategy for fault detection and isolation in parabolic-trough collectors," Renewable Energy, Elsevier, vol. 186(C), pages 691-703.
- Lizárraga-Morazán, Juan Ramón & Picón-Núñez, Martín, 2023. "Optimal sizing and control strategy of low temperature solar thermal utility systems," Energy, Elsevier, vol. 263(PC).
- Panagiotis Michailidis & Iakovos Michailidis & Socratis Gkelios & Elias Kosmatopoulos, 2024. "Artificial Neural Network Applications for Energy Management in Buildings: Current Trends and Future Directions," Energies, MDPI, vol. 17(3), pages 1-47, January.
More about this item
Keywords
Deep learning; Performance prediction; Solar thermal systems;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:145:y:2020:i:c:p:2178-2191. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.