IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v145y2020icp1449-1464.html
   My bibliography  Save this article

D-STATCOM for harmonic mitigation in low voltage distribution network with high penetration of nonlinear loads

Author

Listed:
  • Rohouma, Wesam
  • Balog, Robert S.
  • Peerzada, Aaqib Ahmad
  • Begovic, Miroslav M.

Abstract

With the increased use of power electronic for ac-to-dc converters, electrical distributions systems are experiencing an increased in non-linear loads. These non-linear loads, such as the classical rectifier, draw non-sinusoidal currents which tend to have a deleterious impact on the power quality of the modern AC distribution systems. The interaction of non-sinusoidal currents with the grid impedance leads to distorted system voltage which can adversely impact other devices connected to the grid. The integration of distributed energy resources (DERs) with the distribution power grid can further exacerbate the harmonic power issues. The traditional methods of compensation are no longer adequate and hence it is necessary to develop a means to provide local reactive and harmonic compensation at the source of the power quality problem within the low-voltage distribution network. This article investigates the use of a capacitor-less distribution static synchronous compensator (D-STATCOM) for power quality compensation in modern distribution systems. The proposed topology is based on a matrix converter (MC), controlled by finite control set model predictive control (FCS-MPC) which makes possible the use of inductive energy storage rather than electrolytic capacitors, which have been proven to be the most failure-prone components in a power electronic circuit. Simulation and experimental results are presented to validate the effectiveness of the approach.

Suggested Citation

  • Rohouma, Wesam & Balog, Robert S. & Peerzada, Aaqib Ahmad & Begovic, Miroslav M., 2020. "D-STATCOM for harmonic mitigation in low voltage distribution network with high penetration of nonlinear loads," Renewable Energy, Elsevier, vol. 145(C), pages 1449-1464.
  • Handle: RePEc:eee:renene:v:145:y:2020:i:c:p:1449-1464
    DOI: 10.1016/j.renene.2019.05.134
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119308079
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.05.134?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luis Fernando Grisales-Noreña & Oscar Danilo Montoya & Jesús C. Hernández & Carlos Andres Ramos-Paja & Alberto-Jesus Perea-Moreno, 2022. "A Discrete-Continuous PSO for the Optimal Integration of D-STATCOMs into Electrical Distribution Systems by Considering Annual Power Loss and Investment Costs," Mathematics, MDPI, vol. 10(14), pages 1-16, July.
    2. Umme Mumtahina & Sanath Alahakoon & Peter Wolfs, 2023. "A Literature Review on the Optimal Placement of Static Synchronous Compensator (STATCOM) in Distribution Networks," Energies, MDPI, vol. 16(17), pages 1-38, August.
    3. Antonio Rubens Baran Junior & Thelma S. Piazza Fernandes & Ricardo Augusto Borba, 2019. "Voltage Regulation Planning for Distribution Networks Using Multi-Scenario Three-Phase Optimal Power Flow," Energies, MDPI, vol. 13(1), pages 1-21, December.
    4. Jun Yin Lee & Renuga Verayiah & Kam Hoe Ong & Agileswari K. Ramasamy & Marayati Binti Marsadek, 2020. "Distributed Generation: A Review on Current Energy Status, Grid-Interconnected PQ Issues, and Implementation Constraints of DG in Malaysia," Energies, MDPI, vol. 13(24), pages 1-40, December.
    5. Mohamed Mohamed Khaleel & Mohd Rafi Adzman & Samila Mat Zali, 2021. "An Integrated of Hydrogen Fuel Cell to Distribution Network System: Challenging and Opportunity for D-STATCOM," Energies, MDPI, vol. 14(21), pages 1-26, October.
    6. Devabalaji Kaliaperumal Rukmani & Yuvaraj Thangaraj & Umashankar Subramaniam & Sitharthan Ramachandran & Rajvikram Madurai Elavarasan & Narottam Das & Luis Baringo & Mohamed Imran Abdul Rasheed, 2020. "A New Approach to Optimal Location and Sizing of DSTATCOM in Radial Distribution Networks Using Bio-Inspired Cuckoo Search Algorithm," Energies, MDPI, vol. 13(18), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:145:y:2020:i:c:p:1449-1464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.