IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v145y2020icp1388-1398.html
   My bibliography  Save this article

Acidic and thermal pre-treatments for anaerobic digestion inoculum to improve hydrogen and volatile fatty acid production using xylose as the substrate

Author

Listed:
  • Mockaitis, Gustavo
  • Bruant, Guillaume
  • Guiot, Serge R.
  • Peixoto, Guilherme
  • Foresti, Eugenio
  • Zaiat, Marcelo

Abstract

Xylose is a by-product of lignocellulosic biomass processing for production of second-generation biofuels and could be suitable for bioproduct manufacturing. This paper describes an innovative approach that enables the system to achieve high yielding for hydrogen production. The study compared 4 physicochemical pre-treatments performed in an anaerobic mixed culture (acidic, thermal, acidic-thermal and thermal acidic) to achieve an inoculum with a high-efficiency xylose to hydrogen conversion under mesophilic conditions (30 °C). The acidic pre-treatment was the most efficient to select microorganisms able to produce hydrogen and volatile acid from xylose. Kinetics has shown that acidic pre-treatment had a hydrogen/xylose molar yielding factor of 1.57 (molar base) and a hydrogen maximum production rate of 253 mL H2 h−1. Mass balance considered all possible metabolic pathways using xylose as a substrate. Anaerobic degradation of ethanol was the most active pathway for hydrogen production in all experiments, except for the control. Each pre-treatment performed for the original inoculum resulted in different microbiological profiles, but the genus Clostridium was the most abundant in all assays. Acidic pre-treatment stimulated the growth of organisms from the genera Peptostreptococcaceae, Truepera and Kurthia, which could be related to the better results in hydrogen production found in this condition.

Suggested Citation

  • Mockaitis, Gustavo & Bruant, Guillaume & Guiot, Serge R. & Peixoto, Guilherme & Foresti, Eugenio & Zaiat, Marcelo, 2020. "Acidic and thermal pre-treatments for anaerobic digestion inoculum to improve hydrogen and volatile fatty acid production using xylose as the substrate," Renewable Energy, Elsevier, vol. 145(C), pages 1388-1398.
  • Handle: RePEc:eee:renene:v:145:y:2020:i:c:p:1388-1398
    DOI: 10.1016/j.renene.2019.06.134
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119309723
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.06.134?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ekwenna, Emeka Boniface & Tabraiz, Shamas & Wang, Yaodong & Roskilly, Anthony, 2023. "Exploring the feasibility of biological hydrogen production using seed sludge pretreated with agro-industrial wastes," Renewable Energy, Elsevier, vol. 215(C).
    2. Li, Jiangbo & Wang, Kai & Wang, Shaojie & Su, Haijia, 2023. "Spatially-ordered layer-by-layer biofilms of a two-species microbial consortium promote hydrogen production," Renewable Energy, Elsevier, vol. 215(C).
    3. Moreira, F.S. & Rodrigues, M.S. & Sousa, L.M. & Batista, F.R.X. & Ferreira, J.S. & Cardoso, V.L., 2022. "Single-stage repeated batch cycles using co-culture of Enterobacter cloacae and purple non-sulfur bacteria for hydrogen production," Energy, Elsevier, vol. 239(PE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:145:y:2020:i:c:p:1388-1398. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.