IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v145y2020icp1192-1213.html
   My bibliography  Save this article

CFD modeling and evaluation the performance of a solar cabinet dryer equipped with evacuated tube solar collector and thermal storage system

Author

Listed:
  • Iranmanesh, Masoud
  • Samimi Akhijahani, Hadi
  • Barghi Jahromi, Mohammad Saleh

Abstract

This paper investigates the performance of a solar cabinet drying system equipped with a heat pipe evacuated tube solar collector (ETSC) and thermal storage system with application of PCM. The thermal analysis of the solar collector, drying efficiency, CFD modeling of the system and quality evaluation of dried apple slices was considered. The performance of the dryer was simulated and validated by experimental data. The experiments was conducted at three air flow rates (0.025, 0.05 and 0.09 kg/s) for the drying system with and without using PCM for drying apple slices with the thickness of 5 mm. The result of thermal analysis showed that using PCM increases the input thermal energy about 1.72% and 5.12% for the air flow rates of 0.025 and 0.05 kg/s respectively, but excessive increase in air flow rate (up to 0.05 kg/s) decreases input thermal energy. The maximum overall drying efficiency was related to the system with PCM at the air flow rate of 0.025 kg/s and it was 39.9%. CFD simulation of the storage system and the dryer showed that there is a good agreement between the simulated and experimental. Using PCM has no adverse effect on the quality of the dried product.

Suggested Citation

  • Iranmanesh, Masoud & Samimi Akhijahani, Hadi & Barghi Jahromi, Mohammad Saleh, 2020. "CFD modeling and evaluation the performance of a solar cabinet dryer equipped with evacuated tube solar collector and thermal storage system," Renewable Energy, Elsevier, vol. 145(C), pages 1192-1213.
  • Handle: RePEc:eee:renene:v:145:y:2020:i:c:p:1192-1213
    DOI: 10.1016/j.renene.2019.06.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119308626
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.06.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rahimi Telwar, Donya & Khodaei, Jalal & Samimi-Akhijahani, Hadi, 2024. "Thermo-economic evaluation and structural simulation of a parabolic solar collector (PTC) integrated with a desalination system," Energy, Elsevier, vol. 299(C).
    2. Mathew, Adarsh Abi & Thangavel, Venugopal, 2021. "A novel thermal energy storage integrated evacuated tube heat pipe solar dryer for agricultural products: Performance and economic evaluation," Renewable Energy, Elsevier, vol. 179(C), pages 1674-1693.
    3. Aramesh, M. & Shabani, B., 2020. "On the integration of phase change materials with evacuated tube solar thermal collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    4. Ekka, Jasinta Poonam & Bala, Krishnendu & Muthukumar, P. & Kanaujiya, Dipak Kumar, 2020. "Performance analysis of a forced convection mixed mode horizontal solar cabinet dryer for drying of black ginger (Kaempferia parviflora) using two successive air mass flow rates," Renewable Energy, Elsevier, vol. 152(C), pages 55-66.
    5. Rashidi, Milad & Arabhosseini, Akbar & Samimi-Akhijahani, Hadi & Kermani, Ali M., 2021. "Acceleration the drying process of oleaster (Elaeagnus angustifolia L.) using reflectors and desiccant system in a solar drying system," Renewable Energy, Elsevier, vol. 171(C), pages 526-541.
    6. Wang, Wei-Wei & Zhang, Hong-Liang & Song, Yong-Juan & Song, Jia-Wei & Shi, Dun-Ke & Zhao, Fu-Yun & Cai, Yang, 2022. "Fluid flow and thermal performance of the pulsating heat pipes facilitated with solar collectors: Experiments, theories and GABPNN machine learning," Renewable Energy, Elsevier, vol. 200(C), pages 1533-1547.
    7. Houssam Chouikhi & Baher M. A. Amer, 2023. "Performance Evaluation of an Indirect-Mode Forced Convection Solar Dryer Equipped with a PV/T Air Collector for Drying Tomato Slices," Sustainability, MDPI, vol. 15(6), pages 1-21, March.
    8. Farsijani, Ehsan & Shafizadeh, Alireza & Mobli, Hossein & Akbarzadeh, Aliakbar & Tabatabaei, Meisam & Peng, Wanxi & Aghbashlo, Mortaza, 2024. "Enhanced performance and stability of a solar pond using an external heat exchanger filled with nano-phase change material," Energy, Elsevier, vol. 292(C).
    9. Saini, Raj Kumar & Saini, Devender Kumar & Gupta, Rajeev & Verma, Piush & Thakur, Robin & Kumar, Sushil & wassouf, Ali, 2023. "Technological development in solar dryers from 2016 to 2021-A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    10. Evan Eduard Susanto & Agus Saptoro & Perumal Kumar & Angnes Ngieng Tze Tiong & Aditya Putranto & Suherman Suherman, 2024. "7E + Q analysis: a new multi-dimensional assessment tool of solar dryer for food and agricultural products," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 16363-16385, July.
    11. Malakar, Santanu & Arora, Vinkel Kumar & Nema, Prabhat K., 2021. "Design and performance evaluation of an evacuated tube solar dryer for drying garlic clove," Renewable Energy, Elsevier, vol. 168(C), pages 568-580.
    12. Lingayat, Abhay Bhanudas & Chandramohan, V.P. & Raju, V.R.K. & Meda, Venkatesh, 2020. "A review on indirect type solar dryers for agricultural crops – Dryer setup, its performance, energy storage and important highlights," Applied Energy, Elsevier, vol. 258(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:145:y:2020:i:c:p:1192-1213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.