IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v13y1998i2p255-260.html
   My bibliography  Save this article

Wind energy potential in Aden-Yemen

Author

Listed:
  • Algifri, Abdulla H.

Abstract

The wind energy resource is very large and widely distributed throughout the world as well as in Yemen. Aden possesses a very good potential of wind energy. In this article a number of years data on wind speed in Aden has been studied and presented. A statistical analysis was carried out from which the annual wind speed was found to be 4.5 m/s and most of the time the wind speed is in the range of 3.5–7.5 m/s. The wind speed distributions were represented by Weibull and Rayleigh distributions. It was found that the Rayleigh distribution is suitable to represent the actual probability of wind speed data for Aden. The wind speed data showed that the maximum monthly wind speed occurs in the month of February with the maximum in the month of June. It is concluded that Aden can be explored for wind energy applications.

Suggested Citation

  • Algifri, Abdulla H., 1998. "Wind energy potential in Aden-Yemen," Renewable Energy, Elsevier, vol. 13(2), pages 255-260.
  • Handle: RePEc:eee:renene:v:13:y:1998:i:2:p:255-260
    DOI: 10.1016/S0960-1481(97)00069-4
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148197000694
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0960-1481(97)00069-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Milborrow, David, 1994. "Economics of wind power and comparisons with conventional thermal plant," Renewable Energy, Elsevier, vol. 5(1), pages 692-699.
    2. Mays, Ian D., 1994. "Wind energy prospects for the future," Renewable Energy, Elsevier, vol. 5(1), pages 718-729.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Birgir Freyr Ragnarsson & Gudmundur V. Oddsson & Runar Unnthorsson & Birgir Hrafnkelsson, 2015. "Levelized Cost of Energy Analysis of a Wind Power Generation System at Búrfell in Iceland," Energies, MDPI, vol. 8(9), pages 1-22, September.
    2. Hrayshat, Eyad S., 2007. "Wind resource assessment of the Jordanian southern region," Renewable Energy, Elsevier, vol. 32(11), pages 1948-1960.
    3. Calif, Rudy & Emilion, Richard & Soubdhan, Ted, 2011. "Classification of wind speed distributions using a mixture of Dirichlet distributions," Renewable Energy, Elsevier, vol. 36(11), pages 3091-3097.
    4. Yip, Chak Man Andrew & Gunturu, Udaya Bhaskar & Stenchikov, Georgiy L., 2016. "Wind resource characterization in the Arabian Peninsula," Applied Energy, Elsevier, vol. 164(C), pages 826-836.
    5. Ajlan, Abdullah & Tan, Chee Wei & Abdilahi, Abdirahman Mohamed, 2017. "Assessment of environmental and economic perspectives for renewable-based hybrid power system in Yemen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 559-570.
    6. Olaofe, Zaccheus O. & Folly, Komla A., 2013. "Wind energy analysis based on turbine and developed site power curves: A case-study of Darling City," Renewable Energy, Elsevier, vol. 53(C), pages 306-318.
    7. Bahrami, Arian & Teimourian, Amir & Okoye, Chiemeka Onyeka & Khosravi, Nima, 2019. "Assessing the feasibility of wind energy as a power source in Turkmenistan; a major opportunity for Central Asia's energy market," Energy, Elsevier, vol. 183(C), pages 415-427.
    8. Ahmed, Ahmed Shata, 2011. "Investigation of wind characteristics and wind energy potential at Ras Ghareb, Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2750-2755, August.
    9. Sarhan, Ameen & Hizam, Hashim & Mariun, Norman & Ya'acob, M.E., 2019. "An improved numerical optimization algorithm for sizing and configuration of standalone photo-voltaic system components in Yemen," Renewable Energy, Elsevier, vol. 134(C), pages 1434-1446.
    10. Lashin, Aref & Shata, Ahmed, 2012. "An analysis of wind power potential in Port Said, Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6660-6667.
    11. Xydis, G. & Koroneos, C. & Loizidou, M., 2009. "Exergy analysis in a wind speed prognostic model as a wind farm sitting selection tool: A case study in Southern Greece," Applied Energy, Elsevier, vol. 86(11), pages 2411-2420, November.
    12. Muhammad Fitra Zambak & Catra Indra Cahyadi & Jufri Helmi & Tengku Machdhalie Sofie & Suwarno Suwarno, 2023. "Evaluation and Analysis of Wind Speed with the Weibull and Rayleigh Distribution Models for Energy Potential Using Three Models," International Journal of Energy Economics and Policy, Econjournals, vol. 13(2), pages 427-432, March.
    13. Li, Meishen & Li, Xianguo, 2005. "MEP-type distribution function: a better alternative to Weibull function for wind speed distributions," Renewable Energy, Elsevier, vol. 30(8), pages 1221-1240.
    14. Khraiwish Dalabeeh, Ali S., 2017. "Techno-economic analysis of wind power generation for selected locations in Jordan," Renewable Energy, Elsevier, vol. 101(C), pages 1369-1378.
    15. Ahmed, Ahmed Shata, 2011. "Analysis of electrical power form the wind farm sitting on the Nile River of Aswan, Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1637-1645, April.
    16. Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
    17. Shin, Ju-Young & Ouarda, Taha B.M.J. & Lee, Taesam, 2016. "Heterogeneous mixture distributions for modeling wind speed, application to the UAE," Renewable Energy, Elsevier, vol. 91(C), pages 40-52.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Meishen & Li, Xianguo, 2005. "MEP-type distribution function: a better alternative to Weibull function for wind speed distributions," Renewable Energy, Elsevier, vol. 30(8), pages 1221-1240.
    2. Hawkes, A.D. & Leach, M.A., 2008. "The capacity credit of micro-combined heat and power," Energy Policy, Elsevier, vol. 36(4), pages 1457-1469, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:13:y:1998:i:2:p:255-260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.