IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v135y2019icp1157-1165.html
   My bibliography  Save this article

The electrical energy situation of French islands and focus on the Corsican situation

Author

Listed:
  • Notton, G.
  • Duchaud, J.L.
  • Nivet, M.L.
  • Voyant, C.
  • Chalvatzis, K.
  • Fouilloy, A.

Abstract

The present work aims to present the electrical energy situation of several French islands spread over the World. Various aspects are successively studied: repartition of energy means, renewable energy part in the production with a focus on the intermittent renewable sources, legal and financial aspect. The electrical situation of the islands is compared with the French mainland one. The electricity production cost in the islands are presented and the financial features for renewable energy in France are exposed. In a second part, a focus is realized on the Corsica Island situated in the Mediterranean Sea and partially connected to Italy. Successively, the energy mix, the objective of the new energy plan for 2023 and the renewable energy situation, present and future, are presented. Even if the integration of non-programmable renewable energy plants is more complex in small insular networks, the high cost of electricity generation in such territories encourages the introduction of wind and PV systems. The islands are good laboratories for the development of intermittent and stochastic renewable energy systems.

Suggested Citation

  • Notton, G. & Duchaud, J.L. & Nivet, M.L. & Voyant, C. & Chalvatzis, K. & Fouilloy, A., 2019. "The electrical energy situation of French islands and focus on the Corsican situation," Renewable Energy, Elsevier, vol. 135(C), pages 1157-1165.
  • Handle: RePEc:eee:renene:v:135:y:2019:i:c:p:1157-1165
    DOI: 10.1016/j.renene.2018.12.090
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118315374
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.12.090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duic, Neven & da Graça Carvalho, Maria, 2004. "Increasing renewable energy sources in island energy supply: case study Porto Santo," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(4), pages 383-399, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duchaud, Jean-Laurent & Notton, Gilles & Fouilloy, Alexis & Voyant, Cyril, 2019. "Hybrid renewable power plant sizing – Graphical decision tool, sensitivity analysis and applications in Ajaccio and Tilos," Applied Energy, Elsevier, vol. 254(C).
    2. Xu, Yifan & Ji, Mengmeng & Klemeš, Jiří Jaromír & Tao, Hengcong & Zhu, Baikang & Varbanov, Petar Sabev & Yuan, Meng & Wang, Bohong, 2023. "Optimal renewable energy export strategies of islands: Hydrogen or electricity?," Energy, Elsevier, vol. 269(C).
    3. Parag, Yael, 2021. "Which factors influence large households’ decision to join a time-of-use program? The interplay between demand flexibility, personal benefits and national benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    4. Claudio Francesco Nicolosi & Giuseppe Marco Tina & Ghjuvan Antone Faggianelli & Gilles Notton, 2023. "A Climatological Survey of Corsica for Power System Analyses," Sustainability, MDPI, vol. 15(21), pages 1-30, October.
    5. Ouédraogo, S. & Faggianelli, G.A. & Notton, G. & Duchaud, J.L. & Voyant, C., 2022. "Impact of electricity tariffs and energy management strategies on PV/Battery microgrid performances," Renewable Energy, Elsevier, vol. 199(C), pages 816-825.
    6. Konstantinos Moustris & Dimitrios Zafirakis, 2023. "Day-Ahead Forecasting of the Theoretical and Actual Wind Power Generation in Energy-Constrained Island Systems," Energies, MDPI, vol. 16(12), pages 1-18, June.
    7. Lamnatou, Chr. & Cristofari, C. & Chemisana, D., 2024. "Renewable energy sources as a catalyst for energy transition: Technological innovations and an example of the energy transition in France," Renewable Energy, Elsevier, vol. 221(C).
    8. Marula Tsagkari & Jordi Roca Jusmet, 2020. "Renewable Energy Projects on Isolated Islands in Europe: A Policy Review," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 21-30.
    9. Tzanes, G. & Zafirakis, D. & Makropoulos, C. & Kaldellis, J.K. & Stamou, A.I., 2023. "Energy vulnerability and the exercise of a data-driven analysis protocol: A comparative assessment on power generation aspects for the non-interconnected islands of Greece," Energy Policy, Elsevier, vol. 177(C).
    10. Nathan Guignard & Christian Cristofari & Vincent Debusschere & Lauric Garbuio & Tina Le Mao, 2022. "Micro Pumped Hydro Energy Storage: Sketching a Sustainable Hybrid Solution for Colombian Off-Grid Communities," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    11. Sarah Ouédraogo & Ghjuvan Antone Faggianelli & Guillaume Pigelet & Jean Laurent Duchaud & Gilles Notton, 2020. "Application of Optimal Energy Management Strategies for a Building Powered by PV/Battery System in Corsica Island," Energies, MDPI, vol. 13(17), pages 1-20, September.
    12. François, Agnès & Roche, Robin & Grondin, Dominique & Benne, Michel, 2023. "Assessment of medium and long term scenarios for the electrical autonomy in island territories: The Reunion Island case study," Renewable Energy, Elsevier, vol. 216(C).
    13. Ioannidis, Alexis & Chalvatzis, Konstantinos J. & Li, Xin & Notton, Gilles & Stephanides, Phedeas, 2019. "The case for islands’ energy vulnerability: Electricity supply diversity in 44 global islands," Renewable Energy, Elsevier, vol. 143(C), pages 440-452.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giatrakos, G.P. & Tsoutsos, T.D. & Mouchtaropoulos, P.G. & Naxakis, G.D. & Stavrakakis, G., 2009. "Sustainable energy planning based on a stand-alone hybrid renewableenergy/hydrogen power system: Application in Karpathos island, Greece," Renewable Energy, Elsevier, vol. 34(12), pages 2562-2570.
    2. Solomon, Barry D. & Banerjee, Abhijit, 2006. "A global survey of hydrogen energy research, development and policy," Energy Policy, Elsevier, vol. 34(7), pages 781-792, May.
    3. Manfred Lenzen & Murukesan Krishnapillai & Deveraux Talagi & Jodie Quintal & Denise Quintal & Ron Grant & Simpson Abraham & Cindy Ehmes & Joy Murray, 2014. "Cultural and socio‐economic determinants of energy consumption on small remote islands," Natural Resources Forum, Blackwell Publishing, vol. 38(1), pages 27-46, February.
    4. Kaldellis, J.K. & Zafirakis, D. & Kavadias, K., 2009. "Techno-economic comparison of energy storage systems for island autonomous electrical networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 378-392, February.
    5. Mai Inoue & Yutaka Genchi & Yuki Kudoh, 2017. "Evaluating the Potential of Variable Renewable Energy for a Balanced Isolated Grid: A Japanese Case Study," Sustainability, MDPI, vol. 9(1), pages 1-15, January.
    6. Garcia, Raquel S. & Weisser, Daniel, 2006. "A wind–diesel system with hydrogen storage: Joint optimisation of design and dispatch," Renewable Energy, Elsevier, vol. 31(14), pages 2296-2320.
    7. Ramos-Suárez, J.L. & Ritter, A. & Mata González, J. & Camacho Pérez, A., 2019. "Biogas from animal manure: A sustainable energy opportunity in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 137-150.
    8. Mathiesen, Brian Vad & Lund, Henrik & Karlsson, Kenneth, 2011. "100% Renewable energy systems, climate mitigation and economic growth," Applied Energy, Elsevier, vol. 88(2), pages 488-501, February.
    9. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    10. Deendarlianto, & Widyaparaga, Adhika & Widodo, Tri & Handika, Irine & Chandra Setiawan, Indra & Lindasista, Alia, 2020. "Modelling of Indonesian road transport energy sector in order to fulfill the national energy and oil reduction targets," Renewable Energy, Elsevier, vol. 146(C), pages 504-518.
    11. Lund, H., 2006. "Large-scale integration of optimal combinations of PV, wind and wave power into the electricity supply," Renewable Energy, Elsevier, vol. 31(4), pages 503-515.
    12. Krajacic, Goran & Duic, Neven & Tsikalakis, Antonis & Zoulias, Manos & Caralis, George & Panteri, Eirini & Carvalho, Maria da Graça, 2011. "Feed-in tariffs for promotion of energy storage technologies," Energy Policy, Elsevier, vol. 39(3), pages 1410-1425, March.
    13. Lund, Henrik, 2010. "The implementation of renewable energy systems. Lessons learned from the Danish case," Energy, Elsevier, vol. 35(10), pages 4003-4009.
    14. Patrick Rausch & Michał Suchanek, 2021. "Socioeconomic Factors Influencing the Prosumer’s Investment Decision on Solar Power," Energies, MDPI, vol. 14(21), pages 1-10, November.
    15. Franki, Vladimir & Višković, Alfredo, 2015. "Energy security, policy and technology in South East Europe: Presenting and applying an energy security index to Croatia," Energy, Elsevier, vol. 90(P1), pages 494-507.
    16. Chun-Che Huang & Wen-Yau Liang & Roger R. Gung & Pei-An Wang, 2023. "Rough-Set-Based Rule Induction with the Elimination of Outdated Big Data: Case of Renewable Energy Equipment Promotion," Sustainability, MDPI, vol. 15(20), pages 1-19, October.
    17. Maria Panagiotidou & George Xydis & Christopher Koroneos, 2016. "Environmental Siting Framework for Wind Farms: A Case Study in the Dodecanese Islands," Resources, MDPI, vol. 5(3), pages 1-25, July.
    18. Leena Heistrene & Brian Azzopardi & Amit Vilas Sant & Poonam Mishra, 2022. "Stochastic Generation Scheduling of Insular Grids with High Penetration of Photovoltaic and Battery Energy Storage Systems: South Andaman Island Case Study," Energies, MDPI, vol. 15(7), pages 1-21, April.
    19. Lund, Henrik & Munster, Ebbe, 2006. "Integrated energy systems and local energy markets," Energy Policy, Elsevier, vol. 34(10), pages 1152-1160, July.
    20. Lund, H. & Mathiesen, B.V., 2009. "Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050," Energy, Elsevier, vol. 34(5), pages 524-531.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:135:y:2019:i:c:p:1157-1165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.