IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v131y2019icp1138-1145.html
   My bibliography  Save this article

Small-scale biogas plants in central Vietnam and biogas appliances with a focus on a flue gas analysis of biogas cook stoves

Author

Listed:
  • Roubík, H.
  • Mazancová, J.

Abstract

The major objective of this paper is to fill the research gap regarding small-scale biogas appliances by performing a flue gas analysis of biogas cook stoves in Vietnam. The methods of data collection included a questionnaire survey of rural households (n = 93), discussions with local consultants (n = 6) and observations in central Vietnam. Furthermore, flue gas analyses of biogas cook stoves were performed (n = 93). As the most common appliances, biogas cook stoves were reported as a substitute for conventional cook stoves, eliminating indoor smoke pollution and related health risks. The majority (96%) of biogas cook stoves were two-flame burners that averaged 2.4 (±0.74) years of age and were in use for over 3 h per day. High concentrations of CO in its diluted (8705.35 ± 1790.01 mg m−3) and undiluted forms (24,758.2 ± 4860.2 mg m−3) were detected in biogas flue gas. The concentration of unavoidable produced NO averaged 0.064 (±0.12) mg·m−3, which is an acceptable value for the transformation of biodegradable wastes into biogas that is consequently burned. The study contributes to covering the data gap, as similar studies have not been conducted in Vietnam. The information and data gained are important for further evaluations of biogas technology in Vietnam and other developing countries.

Suggested Citation

  • Roubík, H. & Mazancová, J., 2019. "Small-scale biogas plants in central Vietnam and biogas appliances with a focus on a flue gas analysis of biogas cook stoves," Renewable Energy, Elsevier, vol. 131(C), pages 1138-1145.
  • Handle: RePEc:eee:renene:v:131:y:2019:i:c:p:1138-1145
    DOI: 10.1016/j.renene.2018.08.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118310048
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.08.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grima-Olmedo, C. & Ramírez-Gómez, Á. & Alcalde-Cartagena, R., 2014. "Energetic performance of landfill and digester biogas in a domestic cooker," Applied Energy, Elsevier, vol. 134(C), pages 301-308.
    2. Edwards, Rufus D. & Smith, Kirk R. & Zhang, Junfeng & Ma, Yuqing, 2004. "Implications of changes in household stoves and fuel use in China," Energy Policy, Elsevier, vol. 32(3), pages 395-411, February.
    3. Roubík, Hynek & Mazancová, Jana & Phung, Le Dinh & Banout, Jan, 2018. "Current approach to manure management for small-scale Southeast Asian farmers - Using Vietnamese biogas and non-biogas farms as an example," Renewable Energy, Elsevier, vol. 115(C), pages 362-370.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Weiming & Zhou, Jianan & Li, Yujie & Li, Shu & Yang, Jian, 2021. "Utilization of waste tire powder for gaseous fuel generation via CO2 gasification using waste heat in converter vaporization cooling flue," Renewable Energy, Elsevier, vol. 173(C), pages 283-296.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hynek Roubík & Jana Mazancová & Phung Le Dinh & Dung Dinh Van & Jan Banout, 2018. "Biogas Quality across Small-Scale Biogas Plants: A Case of Central Vietnam," Energies, MDPI, vol. 11(7), pages 1-12, July.
    2. Yang, Chi-Jen & Zhou, Yipei & Jackson, Robert B., 2014. "China's fuel gas sector: History, current status, and future prospects," Utilities Policy, Elsevier, vol. 28(C), pages 12-21.
    3. Cheng, Shikun & Li, Zifu & Mang, Heinz-Peter & Neupane, Kalidas & Wauthelet, Marc & Huba, Elisabeth-Maria, 2014. "Application of fault tree approach for technical assessment of small-sized biogas systems in Nepal," Applied Energy, Elsevier, vol. 113(C), pages 1372-1381.
    4. Kanagawa, Makoto & Nakata, Toshihiko, 2007. "Analysis of the energy access improvement and its socio-economic impacts in rural areas of developing countries," Ecological Economics, Elsevier, vol. 62(2), pages 319-329, April.
    5. Mehetre, Sonam A. & Panwar, N.L. & Sharma, Deepak & Kumar, Himanshu, 2017. "Improved biomass cookstoves for sustainable development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 672-687.
    6. Raman, P. & Ram, N.K. & Murali, J., 2014. "Improved test method for evaluation of bio-mass cook-stoves," Energy, Elsevier, vol. 71(C), pages 479-495.
    7. Zhang, Weishi & Wang, Can & Zhang, Long & Xu, Ying & Cui, Yuanzheng & Lu, Zifeng & Streets, David G., 2018. "Evaluation of the performance of distributed and centralized biomass technologies in rural China," Renewable Energy, Elsevier, vol. 125(C), pages 445-455.
    8. Sehjpal, Ritika & Ramji, Aditya & Soni, Anmol & Kumar, Atul, 2014. "Going beyond incomes: Dimensions of cooking energy transitions in rural India," Energy, Elsevier, vol. 68(C), pages 470-477.
    9. van Groenendaal, Willem & Gehua, Wang, 2010. "Microanalysis of the benefits of China's family-size bio-digesters," Energy, Elsevier, vol. 35(11), pages 4457-4466.
    10. Grieshop, Andrew P. & Marshall, Julian D. & Kandlikar, Milind, 2011. "Health and climate benefits of cookstove replacement options," Energy Policy, Elsevier, vol. 39(12), pages 7530-7542.
    11. Liao, Hua & Tang, Xin & Wei, Yi-Ming, 2016. "Solid fuel use in rural China and its health effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 900-908.
    12. Gao, Xiang & Yu, Qi & Chen, Limin, 2007. "Health effects engineering: Perspectives for environmental health and environmental engineering studies--domestic biomass combustion as an example," Energy Policy, Elsevier, vol. 35(3), pages 1433-1438, March.
    13. Liu, Chang & Zhu, Bei & Ni, Jinlan & Wei, Chu, 2021. "Residential coal-switch policy in China: Development, achievement, and challenge," Energy Policy, Elsevier, vol. 151(C).
    14. Kadam, Rahul & Panwar, N.L., 2017. "Recent advancement in biogas enrichment and its applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 892-903.
    15. Roubík, Hynek & Mazancová, Jana & Rydval, Jan & Kvasnička, Roman, 2020. "Uncovering the dynamic complexity of the development of small–scale biogas technology through causal loops," Renewable Energy, Elsevier, vol. 149(C), pages 235-243.
    16. Qian Li & Jingjing Wang & Xiaoyang Wang & Yubin Wang, 2022. "The Impact of Training on Beef Cattle Farmers’ Installation of Biogas Digesters," Energies, MDPI, vol. 15(9), pages 1-14, April.
    17. Medina, Paulo & Berrueta, V. & Martínez, M. & Ruiz, V. & Edwards, R.D. & Masera, O., 2017. "Comparative performance of five Mexican plancha-type cookstoves using water boiling tests," Development Engineering, Elsevier, vol. 2(C), pages 20-28.
    18. KeChrist Obileke & Nwabunwanne Nwokolo & Golden Makaka & Patrick Mukumba & Helen Onyeaka, 2021. "Anaerobic digestion: Technology for biogas production as a source of renewable energy—A review," Energy & Environment, , vol. 32(2), pages 191-225, March.
    19. Zhang, Lixiao & Yang, Zhifeng & Chen, Bin & Chen, Guoqian, 2009. "Rural energy in China: Pattern and policy," Renewable Energy, Elsevier, vol. 34(12), pages 2813-2823.
    20. Chen, Yilin & Shen, Huizhong & Zhong, Qirui & Chen, Han & Huang, Tianbo & Liu, Junfeng & Cheng, Hefa & Zeng, Eddy Y. & Smith, Kirk R. & Tao, Shu, 2016. "Transition of household cookfuels in China from 2010 to 2012," Applied Energy, Elsevier, vol. 184(C), pages 800-809.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:131:y:2019:i:c:p:1138-1145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.