IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v12y1997i3p245-257.html
   My bibliography  Save this article

Observations of the starting behaviour of a small horizontalaxis wind turbine

Author

Listed:
  • Ebert, P.R.
  • Wood, D.H.

Abstract

This paper describes observations of the starting performance of a small horizontal-axis wind turbine in the context of a simple, quasi-steady analysis of the complex aerodynamics dominated by unsteadiness, high angles of attack, and low Reynolds number. Soon after they begin rotating, the blades can generate unexpectedly high torque. At the same time, the nondimensional pitch rate and reduced frequency are too small to suggest a significant increase of the torque through the effects of unsteadiness. The torque then decreases due to inappropriate blade angles of attack. This leads to a substantial “idle time” at both high and low wind speed, in which the rotating blades are accelerating only slowly and the angles of attack are slowly decreasing. When the angles are reduced to those giving high lift: drag ratios, the blades accelerate rapidly to complete the starting sequence by producing significant amounts of power. At low wind speeds, about 4 m/s, a gust is apparently required to complete the starting sequence.

Suggested Citation

  • Ebert, P.R. & Wood, D.H., 1997. "Observations of the starting behaviour of a small horizontalaxis wind turbine," Renewable Energy, Elsevier, vol. 12(3), pages 245-257.
  • Handle: RePEc:eee:renene:v:12:y:1997:i:3:p:245-257
    DOI: 10.1016/S0960-1481(97)00035-9
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148197000359
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0960-1481(97)00035-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Celik, Yunus & Ingham, Derek & Ma, Lin & Pourkashanian, Mohamed, 2022. "Design and aerodynamic performance analyses of the self-starting H-type VAWT having J-shaped aerofoils considering various design parameters using CFD," Energy, Elsevier, vol. 251(C).
    2. Rossetti, A. & Pavesi, G., 2013. "Comparison of different numerical approaches to the study of the H-Darrieus turbines start-up," Renewable Energy, Elsevier, vol. 50(C), pages 7-19.
    3. Ani, Samuel Ofordile & Polinder, Henk & Ferreira, Jan Abraham, 2014. "Small wind power generation using automotive alternator," Renewable Energy, Elsevier, vol. 66(C), pages 185-195.
    4. Mayer, C & Bechly, M.E & Hampsey, M & Wood, D.H, 2001. "The starting behaviour of a small horizontal-axis wind turbine," Renewable Energy, Elsevier, vol. 22(1), pages 411-417.
    5. Pourrajabian, Abolfazl & Dehghan, Maziar & Javed, Adeel & Wood, David, 2019. "Choosing an appropriate timber for a small wind turbine blade: A comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 1-8.
    6. Shafiqur Rehman & Md. Mahbub Alam & Luai M. Alhems & M. Mujahid Rafique, 2018. "Horizontal Axis Wind Turbine Blade Design Methodologies for Efficiency Enhancement—A Review," Energies, MDPI, vol. 11(3), pages 1-34, February.
    7. Pourrajabian, Abolfazl & Nazmi Afshar, Peyman Amir & Ahmadizadeh, Mehdi & Wood, David, 2016. "Aero-structural design and optimization of a small wind turbine blade," Renewable Energy, Elsevier, vol. 87(P2), pages 837-848.
    8. Muhammad Saif Ullah Khalid & David Wood & Arman Hemmati, 2022. "Self-Starting Characteristics and Flow-Induced Rotation of Single- and Dual-Stage Vertical-Axis Wind Turbines," Energies, MDPI, vol. 15(24), pages 1-19, December.
    9. Ying, Pei & Chen, Yong Kang & Xu, Yi Geng, 2015. "An aerodynamic analysis of a novel small wind turbine based on impulse turbine principles," Renewable Energy, Elsevier, vol. 75(C), pages 37-43.
    10. Kang, Can & Wang, Zhiyuan & Kim, Hyoung-Bum & Shao, Chunbing, 2023. "Effects of solidity on startup performance and flow characteristics of a vertical-axis hydrokinetic rotor with three helical blades," Renewable Energy, Elsevier, vol. 218(C).
    11. Daniel Micallef & Gerard Van Bussel, 2018. "A Review of Urban Wind Energy Research: Aerodynamics and Other Challenges," Energies, MDPI, vol. 11(9), pages 1-27, August.
    12. Sikandar Khan, 2023. "A Modeling Study Focused on Improving the Aerodynamic Performance of a Small Horizontal Axis Wind Turbine," Sustainability, MDPI, vol. 15(6), pages 1-15, March.
    13. Nikolaos Chrysochoidis-Antsos & Gerard J.W. van Bussel & Jan Bozelie & Sander M. Mertens & Ad J.M. van Wijk, 2021. "Performance Characteristics of A Micro Wind Turbine Integrated on A Noise Barrier," Energies, MDPI, vol. 14(5), pages 1-29, February.
    14. Jacob, Joe & Chatterjee, Dhiman, 2019. "Design methodology of hybrid turbine towards better extraction of wind energy," Renewable Energy, Elsevier, vol. 131(C), pages 625-643.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:12:y:1997:i:3:p:245-257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.