IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v123y2018icp806-816.html
   My bibliography  Save this article

Spatial distribution of offshore wind statistics on the coast of Portugal using Regional Frequency Analysis

Author

Listed:
  • Campos, R.M.
  • Guedes Soares, C.

Abstract

This paper investigates the spatial characteristics of wind speed statistics in oceanic areas of Portugal. The main goal is to apply a regionalization method to define statistically homogeneous regions and then analyze the probabilistic moments, the wind power density, percentiles and extreme values within each region. The Regional Frequency Analysis based on L-moments was implemented using five years of atmospheric simulations. The domain convers latitudes 36.0ºN to 42.2ºN and longitudes 11.0ºW to 7.2ºW, with resolution of 0.081° X 0.097° and 6 h. The investigation using the L-moment ratios resulted in four regions: north (1), center (2), southwest (3) and south (4) of Portugal. A discussion about the potential associated with each region, in terms of the wind energy available and the extreme events severity, enriches the final analyses. Region 1 has the benefit of the highest mean wind power density, equal to 909 W/m2, but it presented the most extreme winds with return value of 25.4 m/s for the return period of 20 years. It was observed that extreme winds are reduced moving south, together with the wind power densities, which are analyzed in detail. The spatial and regional characteristics of wind power densities and extreme values are deeply explored.

Suggested Citation

  • Campos, R.M. & Guedes Soares, C., 2018. "Spatial distribution of offshore wind statistics on the coast of Portugal using Regional Frequency Analysis," Renewable Energy, Elsevier, vol. 123(C), pages 806-816.
  • Handle: RePEc:eee:renene:v:123:y:2018:i:c:p:806-816
    DOI: 10.1016/j.renene.2018.02.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118301952
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.02.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nawri, Nikolai & Petersen, Guðrún Nína & Bjornsson, Halldór & Hahmann, Andrea N. & Jónasson, Kristján & Hasager, Charlotte Bay & Clausen, Niels-Erik, 2014. "The wind energy potential of Iceland," Renewable Energy, Elsevier, vol. 69(C), pages 290-299.
    2. Wais, Piotr, 2017. "Two and three-parameter Weibull distribution in available wind power analysis," Renewable Energy, Elsevier, vol. 103(C), pages 15-29.
    3. Wang, Yingguang & Xia, Yiqing & Liu, Xiaojun, 2013. "Establishing robust short-term distributions of load extremes of offshore wind turbines," Renewable Energy, Elsevier, vol. 57(C), pages 606-619.
    4. Gualtieri, Giovanni & Secci, Sauro, 2014. "Extrapolating wind speed time series vs. Weibull distribution to assess wind resource to the turbine hub height: A case study on coastal location in Southern Italy," Renewable Energy, Elsevier, vol. 62(C), pages 164-176.
    5. Bento, Nuno & Fontes, Margarida, 2015. "The construction of a new technological innovation system in a follower country: Wind energy in Portugal," Technological Forecasting and Social Change, Elsevier, vol. 99(C), pages 197-210.
    6. Lun, Isaac Y.F & Lam, Joseph C, 2000. "A study of Weibull parameters using long-term wind observations," Renewable Energy, Elsevier, vol. 20(2), pages 145-153.
    7. Gallego, C. & Pinson, P. & Madsen, H. & Costa, A. & Cuerva, A., 2011. "Influence of local wind speed and direction on wind power dynamics – Application to offshore very short-term forecasting," Applied Energy, Elsevier, vol. 88(11), pages 4087-4096.
    8. Rodriguez-Hernandez, O. & Jaramillo, O.A. & Andaverde, J.A. & del Río, J.A., 2013. "Analysis about sampling, uncertainties and selection of a reliable probabilistic model of wind speed data used on resource assessment," Renewable Energy, Elsevier, vol. 50(C), pages 244-252.
    9. Baseer, M.A. & Meyer, J.P. & Rehman, S. & Alam, Md. Mahbub, 2017. "Wind power characteristics of seven data collection sites in Jubail, Saudi Arabia using Weibull parameters," Renewable Energy, Elsevier, vol. 102(PA), pages 35-49.
    10. Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2014. "WRF wind simulation and wind energy production estimates forced by different reanalyses: Comparison with observed data for Portugal," Applied Energy, Elsevier, vol. 117(C), pages 116-126.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Díaz, H. & Guedes Soares, C., 2022. "A novel multi-criteria decision-making model to evaluate floating wind farm locations," Renewable Energy, Elsevier, vol. 185(C), pages 431-454.
    2. Carreno-Madinabeitia, Sheila & Ibarra-Berastegi, Gabriel & Sáenz, Jon & Ulazia, Alain, 2021. "Long-term changes in offshore wind power density and wind turbine capacity factor in the Iberian Peninsula (1900–2010)," Energy, Elsevier, vol. 226(C).
    3. Díaz, H. & Silva, D. & Bernardo, C. & Guedes Soares, C., 2023. "Micro sitting of floating wind turbines in a wind farm using a multi-criteria framework," Renewable Energy, Elsevier, vol. 204(C), pages 449-474.
    4. Salvação, Nadia & Bentamy, Abderrahim & Guedes Soares, C., 2022. "Developing a new wind dataset by blending satellite data and WRF model wind predictions," Renewable Energy, Elsevier, vol. 198(C), pages 283-295.
    5. Liu, Ling & Wang, Jujie & Li, Jianping & Wei, Lu, 2023. "Monthly wind distribution prediction based on nonparametric estimation and modified differential evolution optimization algorithm," Renewable Energy, Elsevier, vol. 217(C).
    6. He, Junyi & Chan, P.W. & Li, Qiusheng & Lee, C.W., 2020. "Spatiotemporal analysis of offshore wind field characteristics and energy potential in Hong Kong," Energy, Elsevier, vol. 201(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianxing Yu & Yiqin Fu & Yang Yu & Shibo Wu & Yuanda Wu & Minjie You & Shuai Guo & Mu Li, 2019. "Assessment of Offshore Wind Characteristics and Wind Energy Potential in Bohai Bay, China," Energies, MDPI, vol. 12(15), pages 1-19, July.
    2. Murthy, K.S.R. & Rahi, O.P., 2017. "A comprehensive review of wind resource assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1320-1342.
    3. Fazelpour, Farivar & Markarian, Elin & Soltani, Nima, 2017. "Wind energy potential and economic assessment of four locations in Sistan and Balouchestan province in Iran," Renewable Energy, Elsevier, vol. 109(C), pages 646-667.
    4. Katinas, Vladislovas & Gecevicius, Giedrius & Marciukaitis, Mantas, 2018. "An investigation of wind power density distribution at location with low and high wind speeds using statistical model," Applied Energy, Elsevier, vol. 218(C), pages 442-451.
    5. Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2014. "Sensitivity of the WRF model wind simulation and wind energy production estimates to planetary boundary layer parameterizations for onshore and offshore areas in the Iberian Peninsula," Applied Energy, Elsevier, vol. 135(C), pages 234-246.
    6. Suwarno Suwarno & M. Fitra Zambak, 2021. "The Probability Density Function for Wind Speed Using Modified Weibull Distribution," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 544-550.
    7. González-Alonso de Linaje, N. & Mattar, C. & Borvarán, D., 2019. "Quantifying the wind energy potential differences using different WRF initial conditions on Mediterranean coast of Chile," Energy, Elsevier, vol. 188(C).
    8. Emilio Gómez-Lázaro & María C. Bueso & Mathieu Kessler & Sergio Martín-Martínez & Jie Zhang & Bri-Mathias Hodge & Angel Molina-García, 2016. "Probability Density Function Characterization for Aggregated Large-Scale Wind Power Based on Weibull Mixtures," Energies, MDPI, vol. 9(2), pages 1-15, February.
    9. Herrero-Novoa, Cristina & Pérez, Isidro A. & Sánchez, M. Luisa & García, Ma Ángeles & Pardo, Nuria & Fernández-Duque, Beatriz, 2017. "Wind speed description and power density in northern Spain," Energy, Elsevier, vol. 138(C), pages 967-976.
    10. Estefania Artigao & Antonio Vigueras-Rodríguez & Andrés Honrubia-Escribano & Sergio Martín-Martínez & Emilio Gómez-Lázaro, 2021. "Wind Resource and Wind Power Generation Assessment for Education in Engineering," Sustainability, MDPI, vol. 13(5), pages 1-27, February.
    11. Wais, Piotr, 2017. "A review of Weibull functions in wind sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1099-1107.
    12. Alrashidi, Musaed & Rahman, Saifur & Pipattanasomporn, Manisa, 2020. "Metaheuristic optimization algorithms to estimate statistical distribution parameters for characterizing wind speeds," Renewable Energy, Elsevier, vol. 149(C), pages 664-681.
    13. Lepore, Antonio & Palumbo, Biagio & Pievatolo, Antonio, 2020. "A Bayesian approach for site-specific wind rose prediction," Renewable Energy, Elsevier, vol. 150(C), pages 691-702.
    14. Argüeso, D. & Businger, S., 2018. "Wind power characteristics of Oahu, Hawaii," Renewable Energy, Elsevier, vol. 128(PA), pages 324-336.
    15. Jung, Christopher & Schindler, Dirk, 2019. "Wind speed distribution selection – A review of recent development and progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    16. Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2014. "Offshore wind energy resource simulation forced by different reanalyses: Comparison with observed data in the Iberian Peninsula," Applied Energy, Elsevier, vol. 134(C), pages 57-64.
    17. Zheng, Hanbo & Huang, Wufeng & Zhao, Junhui & Liu, Jiefeng & Zhang, Yiyi & Shi, Zhen & Zhang, Chaohai, 2022. "A novel falling model for wind speed probability distribution of wind farms," Renewable Energy, Elsevier, vol. 184(C), pages 91-99.
    18. Xsitaaz T. Chadee & Naresh R. Seegobin & Ricardo M. Clarke, 2017. "Optimizing the Weather Research and Forecasting (WRF) Model for Mapping the Near-Surface Wind Resources over the Southernmost Caribbean Islands of Trinidad and Tobago," Energies, MDPI, vol. 10(7), pages 1-23, July.
    19. He, J.Y. & Chan, P.W. & Li, Q.S. & Lee, C.W., 2022. "Characterizing coastal wind energy resources based on sodar and microwave radiometer observations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    20. Gugliani, Gaurav Kumar & Sarkar, Arnab & Ley, Christophe & Matsagar, Vasant, 2021. "Identification of optimum wind turbine parameters for varying wind climates using a novel month-based turbine performance index," Renewable Energy, Elsevier, vol. 171(C), pages 902-914.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:123:y:2018:i:c:p:806-816. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.