IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v119y2018icp834-843.html
   My bibliography  Save this article

From bioethanol exploitation to high grade hydrogen generation: Steam reforming promoted by a Co-Pt catalyst in a Pd-based membrane reactor

Author

Listed:
  • Iulianelli, Adolfo
  • Palma, Vincenzo
  • Bagnato, Giuseppe
  • Ruocco, Concetta
  • Huang, Yan
  • Veziroğlu, Nejat T.
  • Basile, Angelo

Abstract

There is a general agreement about the consideration that the fossil fuels are a limited resource and the emission of carbon dioxide and other harmful products are the main cause of the global warming and climate change. The interest for decreasing the fossil fuels dependence and reducing the greenhouse gases emissions represents a top priority. The biomass is a renewable resource useful for biodiesel and bioethanol production. The latter, most plentiful, is currently considered as green ethanol produced from biomass by biological processes. Meanwhile, membrane reactors represent an innovative and intensified technology for the production and the simultaneous recovery of high-grade hydrogen in only one stage. Here, we describe an efficient medium-temperature (T = 400 °C) bioethanol steam reforming process in a thin (∼5 μm of metallic layer) supported Pd-based membrane reactor packed with a not commercial Co(10%)Pt (3%)/CeO2-ZrO2-Al2O3 bi-metallic catalyst at space velocity between 1900 h−1 and 4800 h−1 and reaction pressure between 1.5 and 2.0 bar. A real bioethanol mixture coming from industry is supplied to the membrane reactor for producing high grade hydrogen, reaching 60% of ethanol conversion (versus ∼ 40% of the equivalent conventional reactor) at 400 °C, 2.0 bar and 1900 h−1, meanwhile recovering almost 70% of the hydrogen produced during the bioethanol steam reforming reaction with a purity higher than 99%. This would make the delivery of hydrogen for PEM fuel cells supplying – and hence the use of green bioethanol as a practical hydrogen carrier – feasible.

Suggested Citation

  • Iulianelli, Adolfo & Palma, Vincenzo & Bagnato, Giuseppe & Ruocco, Concetta & Huang, Yan & Veziroğlu, Nejat T. & Basile, Angelo, 2018. "From bioethanol exploitation to high grade hydrogen generation: Steam reforming promoted by a Co-Pt catalyst in a Pd-based membrane reactor," Renewable Energy, Elsevier, vol. 119(C), pages 834-843.
  • Handle: RePEc:eee:renene:v:119:y:2018:i:c:p:834-843
    DOI: 10.1016/j.renene.2017.10.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117310133
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.10.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ekaterina Matus & Olga Sukhova & Ilyas Ismagilov & Mikhail Kerzhentsev & Olga Stonkus & Zinfer Ismagilov, 2021. "Hydrogen Production through Autothermal Reforming of Ethanol: Enhancement of Ni Catalyst Performance via Promotion," Energies, MDPI, vol. 14(16), pages 1-16, August.
    2. Iulianelli, Adolfo & Brunetti, Adele & Pino, Lidia & Italiano, Cristina & Ferrante, Giovanni Drago & Gensini, Mario & Vita, Antonio, 2023. "An integrated two stages inorganic membrane-based system to generate and recover decarbonized H2: An experimental study and performance indexes analysis," Renewable Energy, Elsevier, vol. 210(C), pages 472-485.
    3. Bakhtyari, Ali & Bardool, Roghayeh & Rahimpour, Mohammad Reza & Iulianelli, Adolfo, 2021. "Dehydration of bio-alcohols in an enhanced membrane-assisted reactor: A rigorous sensitivity analysis and multi-objective optimization," Renewable Energy, Elsevier, vol. 177(C), pages 519-543.
    4. Sanchez, Nestor & Ruiz, Ruth & Rödl, Anne & Cobo, Martha, 2021. "Technical and environmental analysis on the power production from residual biomass using hydrogen as energy vector," Renewable Energy, Elsevier, vol. 175(C), pages 825-839.
    5. Tang, Xincheng & Wu, Yanxiao & Fang, Zhenchang & Dong, Xinyu & Du, Zhongxuan & Deng, Bicai & Sun, Chunhua & Zhou, Feng & Qiao, Xinqi & Li, Xinling, 2024. "Syntheses, catalytic performances and DFT investigations: A recent review of copper-based catalysts of methanol steam reforming for hydrogen production," Energy, Elsevier, vol. 295(C).
    6. Bagnato, Giuseppe & Boulet, Florent & Sanna, Aimaro, 2019. "Effect of Li-LSX zeolite, NiCe/Al2O3 and NiCe/ZrO2 on the production of drop-in bio-fuels by pyrolysis and hydrotreating of Nannochloropsis and isochrysis microalgae," Energy, Elsevier, vol. 179(C), pages 199-213.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:119:y:2018:i:c:p:834-843. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.