IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v115y2018icp1035-1042.html
   My bibliography  Save this article

Effective harvesting of UV induced production of excitons from Fe3O4 with proficient rGO-PTh acting as BI-functional redox photocatalyst

Author

Listed:
  • Kalyani, Rajendran
  • Gurunathan, Karuppasamy

Abstract

We report the synthesis of PTh-rGO-Fe3O4 nanocomposite from a simple combination of graphene and polythiophene (PTh) with metal oxide for application as photocatalyst. The structure and morphology of the nanocomposite were studied by powder XRD, FTIR spectroscopy, Raman analysis, EDAX and TEM. The observed properties of the nanocomposite were fineset for the application in the field of photocatalyst. The photocatalytic effect was studied by utilizing the nanocomposite in water splitting for hydrogen production, degradation of Malachite green and shielding of Rose Bengal from UV degradation. The maximum quantum efficiency for hydrogen production obtained with 0.1% w/v of PTh-rGO-Fe3O4 photocatalyst was 11.48% with a hydrogen production rate of 178.4 μmol/h. Furthermore, the photocatalyst shows 87.9% degradation of Malachite green and acts as an effective UV shielding layer preventing 53.09% degradation of Rose Bengal. This study reveals that our nanocomposite will be a better photocatalytic material.

Suggested Citation

  • Kalyani, Rajendran & Gurunathan, Karuppasamy, 2018. "Effective harvesting of UV induced production of excitons from Fe3O4 with proficient rGO-PTh acting as BI-functional redox photocatalyst," Renewable Energy, Elsevier, vol. 115(C), pages 1035-1042.
  • Handle: RePEc:eee:renene:v:115:y:2018:i:c:p:1035-1042
    DOI: 10.1016/j.renene.2017.09.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117308935
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.09.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Midilli, A. & Ay, M. & Dincer, I. & Rosen, M. A., 2005. "On hydrogen and hydrogen energy strategies: I: current status and needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(3), pages 255-271, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sivasakthi, Sethuraman & Gurunathan, Karuppasamy, 2020. "Graphitic carbon nitride bedecked with CuO/ZnO hetero-interface microflower towards high photocatalytic performance," Renewable Energy, Elsevier, vol. 159(C), pages 786-800.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hosseini, S. Mohammad & Ahmadi, Rouhollah, 2017. "Performance and emissions characteristics in the combustion of co-fuel diesel-hydrogen in a heavy duty engine," Applied Energy, Elsevier, vol. 205(C), pages 911-925.
    2. Ermis, K. & Midilli, A. & Dincer, I. & Rosen, M.A., 2007. "Artificial neural network analysis of world green energy use," Energy Policy, Elsevier, vol. 35(3), pages 1731-1743, March.
    3. Lewandowska-Bernat, Anna & Desideri, Umberto, 2018. "Opportunities of power-to-gas technology in different energy systems architectures," Applied Energy, Elsevier, vol. 228(C), pages 57-67.
    4. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    5. Liuzhang Ouyang & Miaolian Ma & Minghong Huang & Ruoming Duan & Hui Wang & Lixian Sun & Min Zhu, 2015. "Enhanced Hydrogen Generation Properties of MgH 2 -Based Hydrides by Breaking the Magnesium Hydroxide Passivation Layer," Energies, MDPI, vol. 8(5), pages 1-16, May.
    6. Chen, Scarlett & Kumar, Anikesh & Wong, Wee Chin & Chiu, Min-Sen & Wang, Xiaonan, 2019. "Hydrogen value chain and fuel cells within hybrid renewable energy systems: Advanced operation and control strategies," Applied Energy, Elsevier, vol. 233, pages 321-337.
    7. Yang, Rui & Mohamed, Amira & Kim, Kibum, 2023. "Optimal design and flow-field pattern selection of proton exchange membrane electrolyzers using artificial intelligence," Energy, Elsevier, vol. 264(C).
    8. Yoon, Ha-Jun & Seo, Seung-Kwon & Lee, Chul-Jin, 2022. "Multi-period optimization of hydrogen supply chain utilizing natural gas pipelines and byproduct hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    9. Kim, Heehyang & Kim, Ayeon & Byun, Manhee & Lim, Hankwon, 2021. "Comparative feasibility studies of H2 supply scenarios for methanol as a carbon-neutral H2 carrier at various scales and distances," Renewable Energy, Elsevier, vol. 180(C), pages 552-559.
    10. Ma, Yufei & Guan, Guoqing & Hao, Xiaogang & Cao, Ji & Abudula, Abuliti, 2017. "Molybdenum carbide as alternative catalyst for hydrogen production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1101-1129.
    11. Moreira, F.S. & Rodrigues, M.S. & Sousa, L.M. & Batista, F.R.X. & Ferreira, J.S. & Cardoso, V.L., 2022. "Single-stage repeated batch cycles using co-culture of Enterobacter cloacae and purple non-sulfur bacteria for hydrogen production," Energy, Elsevier, vol. 239(PE).
    12. Kelly-Yong, Tau Len & Lee, Keat Teong & Mohamed, Abdul Rahman & Bhatia, Subhash, 2007. "Potential of hydrogen from oil palm biomass as a source of renewable energy worldwide," Energy Policy, Elsevier, vol. 35(11), pages 5692-5701, November.
    13. Yilmaz, Fatih & Balta, M. Tolga & Selbaş, Reşat, 2016. "A review of solar based hydrogen production methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 171-178.
    14. Karim, Nissar Mohammad & Manzoor, Sadia & Soin, Norhayati, 2013. "Unification of contemporary negative bias temperature instability models for p-MOSFET energy degradation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 776-780.
    15. Valdés, R. & Lucio, J.H. & Rodríguez, L.R., 2013. "Operational simulation of wind power plants for electrolytic hydrogen production connected to a distributed electricity generation grid," Renewable Energy, Elsevier, vol. 53(C), pages 249-257.
    16. Wong, Yee Meng & Wu, Ta Yeong & Juan, Joon Ching, 2014. "A review of sustainable hydrogen production using seed sludge via dark fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 471-482.
    17. Liu, P.F. & Chu, J.K. & Hou, S.J. & Xu, P. & Zheng, J.Y., 2012. "Numerical simulation and optimal design for composite high-pressure hydrogen storage vessel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1817-1827.
    18. Nasir Uddin, Md. & Daud, W.M.A. Wan & Abbas, Hazim F., 2013. "Potential hydrogen and non-condensable gases production from biomass pyrolysis: Insights into the process variables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 204-224.
    19. Wang, Kaichen & Feng, Yuancheng & Xiao, Feng & Zhang, Tianying & Wang, Zhiming & Ye, Feng & Xu, Chao, 2023. "Operando analysis of through-plane interlayer temperatures in the PEM electrolyzer cell under various operating conditions," Applied Energy, Elsevier, vol. 348(C).
    20. Xiao, Huahua & Duan, Qiangling & Sun, Jinhua, 2018. "Premixed flame propagation in hydrogen explosions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1988-2001.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:115:y:2018:i:c:p:1035-1042. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.