IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v113y2017icp669-678.html
   My bibliography  Save this article

Numerical simulations of wake characteristics of a horizontal axis tidal stream turbine using actuator line model

Author

Listed:
  • Baba-Ahmadi, Mohammad H.
  • Dong, Ping

Abstract

The wake of a laboratory scale tidal stream turbine in a shallow water channel with a turbulent inflow is simulated using the hybrid LES/ALM technique, which combines large eddy simulation with the actuator line method. The turbulent inlet conditions are generated using the mapping method to avoid a precursor running and large space for saving data. The numerical results demonstrated the usefulness of the mapping technique as well as some shortcomings that still remain to be addressed. Good agreement between numerical predictions and experimental data is achieved for both the mean and turbulent characteristics of the flow behind the turbine. The examination of changes in turbulence intensity and turbulent kinetic energy in the streamwise direction confirms the existence of a peak and transition to a highly turbulent flow about three diameters downstream of the turbine, which means that the distinct characteristics of the streamwise changes of turbulence intensity or turbulent kinetic energy may serve as an effective indicator for the flow regime transition and wake behaviour.

Suggested Citation

  • Baba-Ahmadi, Mohammad H. & Dong, Ping, 2017. "Numerical simulations of wake characteristics of a horizontal axis tidal stream turbine using actuator line model," Renewable Energy, Elsevier, vol. 113(C), pages 669-678.
  • Handle: RePEc:eee:renene:v:113:y:2017:i:c:p:669-678
    DOI: 10.1016/j.renene.2017.06.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117305402
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.06.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tedds, S.C. & Owen, I. & Poole, R.J., 2014. "Near-wake characteristics of a model horizontal axis tidal stream turbine," Renewable Energy, Elsevier, vol. 63(C), pages 222-235.
    2. Baba-Ahmadi, Mohammad H. & Dong, Ping, 2017. "Validation of the actuator line method for simulating flow through a horizontal axis tidal stream turbine by comparison with measurements," Renewable Energy, Elsevier, vol. 113(C), pages 420-427.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fei, Zhao & Tengyuan, Wang & Xiaoxia, Gao & Haiying, Sun & Hongxing, Yang & Zhonghe, Han & Yu, Wang & Xiaoxun, Zhu, 2020. "Experimental study on wake interactions and performance of the turbines with different rotor-diameters in adjacent area of large-scale wind farm," Energy, Elsevier, vol. 199(C).
    2. Deng, Xu & Zhang, Jisheng & Lin, Xiangfeng, 2024. "Proposal of actuator line-immersed boundary coupling model for tidal stream turbine modeling with hydrodynamics upon scouring morphology," Energy, Elsevier, vol. 292(C).
    3. Chen, Long & Yao, Yu & Wang, Zhi-liang, 2020. "Development and validation of a prediction model for the multi-wake of tidal stream turbines," Renewable Energy, Elsevier, vol. 155(C), pages 800-809.
    4. Chen, Yaling & Lin, Binliang & Sun, Jian & Guo, Jinxi & Wu, Wenlong, 2019. "Hydrodynamic effects of the ratio of rotor diameter to water depth: An experimental study," Renewable Energy, Elsevier, vol. 136(C), pages 331-341.
    5. Ahmadi, Mohammad H.B. & Yang, Zhiyin, 2020. "The evolution of turbulence characteristics in the wake of a horizontal axis tidal stream turbine," Renewable Energy, Elsevier, vol. 151(C), pages 1008-1015.
    6. Ahmadi, Mohammad H.B. & Yang, Zhiyin, 2020. "Numerical study of the coupling between the instantaneous blade loading/power of an axial wind turbine and upstream turbulence at high Reynolds numbers," Energy, Elsevier, vol. 207(C).
    7. Hachmann, Christoph & Stallard, Tim & Stansby, Peter & Lin, Binliang, 2021. "Experimentally validated study of the impact of operating strategies on power efficiency of a turbine array in a bi-directional tidal channel," Renewable Energy, Elsevier, vol. 163(C), pages 1408-1426.
    8. Ahmadi, Mohammad H.B. & Yang, Zhiyin, 2021. "On wind turbine power fluctuations induced by large-scale motions," Applied Energy, Elsevier, vol. 293(C).
    9. Ahmadi, Mohammad H.B., 2019. "Influence of upstream turbulence on the wake characteristics of a tidal stream turbine," Renewable Energy, Elsevier, vol. 132(C), pages 989-997.
    10. Arabgolarcheh, Alireza & Jannesarahmadi, Sahar & Benini, Ernesto, 2022. "Modeling of near wake characteristics in floating offshore wind turbines using an actuator line method," Renewable Energy, Elsevier, vol. 185(C), pages 871-887.
    11. Ebdon, Tim & Allmark, Matthew J. & O’Doherty, Daphne M. & Mason-Jones, Allan & O’Doherty, Tim & Germain, Gregory & Gaurier, Benoit, 2021. "The impact of turbulence and turbine operating condition on the wakes of tidal turbines," Renewable Energy, Elsevier, vol. 165(P2), pages 96-116.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El Fajri, Oumnia & Bowman, Joshua & Bhushan, Shanti & Thompson, David & O'Doherty, Tim, 2022. "Numerical study of the effect of tip-speed ratio on hydrokinetic turbine wake recovery," Renewable Energy, Elsevier, vol. 182(C), pages 725-750.
    2. Ahmadi, Mohammad H.B. & Yang, Zhiyin, 2020. "The evolution of turbulence characteristics in the wake of a horizontal axis tidal stream turbine," Renewable Energy, Elsevier, vol. 151(C), pages 1008-1015.
    3. Ahmadi, Mohammad H.B., 2019. "Influence of upstream turbulence on the wake characteristics of a tidal stream turbine," Renewable Energy, Elsevier, vol. 132(C), pages 989-997.
    4. Vinod, Ashwin & Han, Cong & Banerjee, Arindam, 2021. "Tidal turbine performance and near-wake characteristics in a sheared turbulent inflow," Renewable Energy, Elsevier, vol. 175(C), pages 840-852.
    5. Maduka, Maduka & Li, Chi Wai, 2022. "Experimental evaluation of power performance and wake characteristics of twin flanged duct turbines in tandem under bi-directional tidal flows," Renewable Energy, Elsevier, vol. 199(C), pages 1543-1567.
    6. Deng, Xu & Zhang, Jisheng & Lin, Xiangfeng, 2024. "Proposal of actuator line-immersed boundary coupling model for tidal stream turbine modeling with hydrodynamics upon scouring morphology," Energy, Elsevier, vol. 292(C).
    7. Zhang, Jisheng & Zhou, Yudi & Lin, Xiangfeng & Wang, Guohui & Guo, Yakun & Chen, Hao, 2022. "Experimental investigation on wake and thrust characteristics of a twin-rotor horizontal axis tidal stream turbine," Renewable Energy, Elsevier, vol. 195(C), pages 701-715.
    8. Zia Ur Rehman & Saeed Badshah & Amer Farhan Rafique & Mujahid Badshah & Sakhi Jan & Muhammad Amjad, 2021. "Effect of a Support Tower on the Performance and Wake of a Tidal Current Turbine," Energies, MDPI, vol. 14(4), pages 1-13, February.
    9. Arabgolarcheh, Alireza & Rouhollahi, Amirhossein & Benini, Ernesto, 2023. "Analysis of middle-to-far wake behind floating offshore wind turbines in the presence of multiple platform motions," Renewable Energy, Elsevier, vol. 208(C), pages 546-560.
    10. Clemente Gotelli & Mirko Musa & Michele Guala & Cristián Escauriaza, 2019. "Experimental and Numerical Investigation of Wake Interactions of Marine Hydrokinetic Turbines," Energies, MDPI, vol. 12(16), pages 1-17, August.
    11. de Jesus Henriques, Tiago A. & Hedges, Terry S. & Owen, Ieuan & Poole, Robert J., 2016. "The influence of blade pitch angle on the performance of a model horizontal axis tidal stream turbine operating under wave–current interaction," Energy, Elsevier, vol. 102(C), pages 166-175.
    12. Mujahid Badshah & Saeed Badshah & James VanZwieten & Sakhi Jan & Muhammad Amir & Suheel Abdullah Malik, 2019. "Coupled Fluid-Structure Interaction Modelling of Loads Variation and Fatigue Life of a Full-Scale Tidal Turbine under the Effect of Velocity Profile," Energies, MDPI, vol. 12(11), pages 1-22, June.
    13. Nimal Sudhan Saravana Prabahar & Sam T. Fredriksson & Göran Broström & Björn Bergqvist, 2023. "Validation of Actuator Line Modeling and Large Eddy Simulations of Kite-Borne Tidal Stream Turbines against ADCP Observations," Energies, MDPI, vol. 16(16), pages 1-27, August.
    14. Sang Lee & Matthew Churchfield & Frederick Driscoll & Senu Sirnivas & Jason Jonkman & Patrick Moriarty & Bjόrn Skaare & Finn Gunnar Nielsen & Erik Byklum, 2018. "Load Estimation of Offshore Wind Turbines," Energies, MDPI, vol. 11(7), pages 1-15, July.
    15. Ahmadi, Mohammad H.B. & Yang, Zhiyin, 2020. "Numerical study of the coupling between the instantaneous blade loading/power of an axial wind turbine and upstream turbulence at high Reynolds numbers," Energy, Elsevier, vol. 207(C).
    16. Ian Masters & Alison Williams & T. Nick Croft & Michael Togneri & Matt Edmunds & Enayatollah Zangiabadi & Iain Fairley & Harshinie Karunarathna, 2015. "A Comparison of Numerical Modelling Techniques for Tidal Stream Turbine Analysis," Energies, MDPI, vol. 8(8), pages 1-21, July.
    17. Faizan, Muhammad & Badshah, Saeed & Badshah, Mujahid & Haider, Basharat Ali, 2022. "Performance and wake analysis of horizontal axis tidal current turbine using Improved Delayed Detached Eddy Simulation," Renewable Energy, Elsevier, vol. 184(C), pages 740-752.
    18. Chen, Yaling & Lin, Binliang & Lin, Jie & Wang, Shujie, 2017. "Experimental study of wake structure behind a horizontal axis tidal stream turbine," Applied Energy, Elsevier, vol. 196(C), pages 82-96.
    19. Angus C. W. Creech & Alistair G. L. Borthwick & David Ingram, 2017. "Effects of Support Structures in an LES Actuator Line Model of a Tidal Turbine with Contra-Rotating Rotors," Energies, MDPI, vol. 10(5), pages 1-25, May.
    20. Zhang, Yuquan & Zang, Wei & Zheng, Jinhai & Cappietti, Lorenzo & Zhang, Jisheng & Zheng, Yuan & Fernandez-Rodriguez, E., 2021. "The influence of waves propagating with the current on the wake of a tidal stream turbine," Applied Energy, Elsevier, vol. 290(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:113:y:2017:i:c:p:669-678. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.