IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v113y2017icp580-586.html
   My bibliography  Save this article

Enhancement of acetone-butanol-ethanol fermentation from eucalyptus hydrolysate with optimized nutrient supplementation through statistical experimental designs

Author

Listed:
  • Zheng, Jin
  • Tashiro, Yukihiro
  • Zhao, Tao
  • Wang, Qunhui
  • Sakai, Kenji
  • Sonomoto, Kenji

Abstract

Eucalyptus has been previously suggested as a potential substrate for acetone-butanol-ethanol (ABE) production without nutrient supplementation; however, incomplete sugar consumption has prevented improvement of ABE production. Cellulase loading with 35 FPU g−1 was first optimized in terms of high hydrolysis efficiency (95%). However, only 0.43 g L−1 ABE production and 3.44% glucose consumption rate were achieved. To improve ABE production from eucalyptus hydrolysate, supplementation of 6 nutrients in common tryptone-yeast extract (TY) medium were investigated by statistical approaches. Three nutrients including yeast extract, tryptone, and FeSO4·7H2O were screened as significant nutrients for ABE production. Subsequently, use of a modified TY medium (MTY medium: yeast extract 3.04 g L−1, tryptone 7.64 g L−1, FeSO4·7H2O 15.3 mg L−1), which was subsequently predicted by Plackett-Burman and Box-Behnken designs to stimulate ABE production, resulted in ca. 40-fold increase in ABE concentration (16.9 g L−1) and a glucose consumption rate of 100%. We first examined previously uninvestigated nutrition combinations using Plackett-Burman and Box-Behnken designs for high ABE production from eucalyptus hydrolysate. This study shows that statistical method would be a powerful tool for the optimization and enhancement of ABE production from eucalyptus hydrolysate.

Suggested Citation

  • Zheng, Jin & Tashiro, Yukihiro & Zhao, Tao & Wang, Qunhui & Sakai, Kenji & Sonomoto, Kenji, 2017. "Enhancement of acetone-butanol-ethanol fermentation from eucalyptus hydrolysate with optimized nutrient supplementation through statistical experimental designs," Renewable Energy, Elsevier, vol. 113(C), pages 580-586.
  • Handle: RePEc:eee:renene:v:113:y:2017:i:c:p:580-586
    DOI: 10.1016/j.renene.2017.05.097
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117305013
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.05.097?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zheng, Jin & Tashiro, Yukihiro & Wang, Qunhui & Sakai, Kenji & Sonomoto, Kenji, 2015. "Feasibility of acetone–butanol–ethanol fermentation from eucalyptus hydrolysate without nutrients supplementation," Applied Energy, Elsevier, vol. 140(C), pages 113-119.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Zhicai & Zheng, Huihua & Qian, Jingya, 2023. "Pretreatment with a combination of steam explosion and NaOH increases butanol production of enzymatically hydrolyzed corn stover," Renewable Energy, Elsevier, vol. 203(C), pages 301-311.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lopes, Verônica dos Santos & Fischer, Janaína & Pinheiro, Tais Magalhães Abrantes & Cabral, Bruna Vieira & Cardoso, Vicelma Luiz & Coutinho Filho, Ubirajara, 2017. "Biosurfactant and ethanol co-production using Pseudomonas aeruginosa and Saccharomyces cerevisiae co-cultures and exploded sugarcane bagasse," Renewable Energy, Elsevier, vol. 109(C), pages 305-310.
    2. Wang, Pixiang & Chen, Yong Mei & Wang, Yifen & Lee, Yoon Y. & Zong, Wenming & Taylor, Steven & McDonald, Timothy & Wang, Yi, 2019. "Towards comprehensive lignocellulosic biomass utilization for bioenergy production: Efficient biobutanol production from acetic acid pretreated switchgrass with Clostridium saccharoperbutylacetonicum ," Applied Energy, Elsevier, vol. 236(C), pages 551-559.
    3. Su, Changsheng & Zhang, Changwei & Wu, Yilu & Zhu, Qian & Wen, Jieyi & Wang, Yankun & Zhao, Jianbo & Liu, Yicheng & Qin, Peiyong & Cai, Di, 2022. "Combination of pH adjusting and intermittent feeding can improve fermentative acetone-butanol-ethanol (ABE) production from steam exploded corn stover," Renewable Energy, Elsevier, vol. 200(C), pages 592-600.
    4. Pereira, L.G. & Dias, M.O.S. & Mariano, A.P. & Maciel Filho, R. & Bonomi, A., 2015. "Economic and environmental assessment of n-butanol production in an integrated first and second generation sugarcane biorefinery: Fermentative versus catalytic routes," Applied Energy, Elsevier, vol. 160(C), pages 120-131.
    5. Zhu, Ming-Qiang & Wen, Jia-Long & Wang, Zhi-Wen & Su, Yin-Quan & Wei, Qin & Sun, Run-Cang, 2015. "Structural changes in lignin during integrated process of steam explosion followed by alkaline hydrogen peroxide of Eucommia ulmoides Oliver and its effect on enzymatic hydrolysis," Applied Energy, Elsevier, vol. 158(C), pages 233-242.
    6. Luo, Wei & Zhao, Zhangmin & Pan, Hepeng & Zhao, Lankun & Xu, Chuangao & Yu, Xiaobin, 2018. "Feasibility of butanol production from wheat starch wastewater by Clostridium acetobutylicum," Energy, Elsevier, vol. 154(C), pages 240-248.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:113:y:2017:i:c:p:580-586. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.