IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v10y1997i4p585-611.html
   My bibliography  Save this article

Wind energy potential assessment in Uttara Kannada district of Karnataka, India

Author

Listed:
  • Ramachandra, T.V.
  • Subramanian, D.K.
  • Joshi, N.V.

Abstract

Availability of wind energy and its characteristics at Kumta and Sirsi in Uttara Kannada District of Karnataka has been studied based on primary data collected at these sites for a period of 24 months. Wind regimes at Karwar (1952–1989), Honnavar (1939–1989) and Shirali (1974–1989) have also been analysed based on data collected from India Meteorological Department (IMD) of respective meterological observatories. Wind energy conversion systems would be most effective in these taluks during the period May to August. The monthly frequency distributions of wind speed have been analysed for Kumta and Sirsi where hourly wind speed recording is available. It is shown that two parameter Weibull distribution is a good representation of the probability density function for the wind speed. Energy Pattern Factor (EPF) and Power Densities are computed for sites at Kumta and Sirsi. With the knowledge of EPF and mean wind speed, mean power density is computed for Karwar, Honnavar and Shirali. Our analyses show that the coastal taluks such as Karwar and Kumta have good wind potential. This potential, if exploited would help local industries and coconut and areca plantations. Premonsoon availability of wind energy would help in irrigating these orchards and makes the wind energy a desirable alternative.

Suggested Citation

  • Ramachandra, T.V. & Subramanian, D.K. & Joshi, N.V., 1997. "Wind energy potential assessment in Uttara Kannada district of Karnataka, India," Renewable Energy, Elsevier, vol. 10(4), pages 585-611.
  • Handle: RePEc:eee:renene:v:10:y:1997:i:4:p:585-611
    DOI: 10.1016/S0960-1481(96)00034-1
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148196000341
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0960-1481(96)00034-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jung, Sungmoon & Arda Vanli, O. & Kwon, Soon-Duck, 2013. "Wind energy potential assessment considering the uncertainties due to limited data," Applied Energy, Elsevier, vol. 102(C), pages 1492-1503.
    2. Rehman, Shafiqur, 2005. "Prospects of wind farm development in Saudi Arabia," Renewable Energy, Elsevier, vol. 30(3), pages 447-463.
    3. Ramachandra, T.V. & Shruthi, B.V., 2007. "Spatial mapping of renewable energy potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1460-1480, September.
    4. AL-Yahyai, Sultan & Charabi, Yassine & Gastli, Adel & Al-Alawi, Saleh, 2010. "Assessment of wind energy potential locations in Oman using data from existing weather stations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1428-1436, June.
    5. Jebaraj, S. & Iniyan, S., 2006. "A review of energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 281-311, August.
    6. Hossain, Jami & Sinha, Vinay & Kishore, V.V.N., 2011. "A GIS based assessment of potential for windfarms in India," Renewable Energy, Elsevier, vol. 36(12), pages 3257-3267.
    7. Keyhani, A. & Ghasemi-Varnamkhasti, M. & Khanali, M. & Abbaszadeh, R., 2010. "An assessment of wind energy potential as a power generation source in the capital of Iran, Tehran," Energy, Elsevier, vol. 35(1), pages 188-201.
    8. Ramachandra, T.V., 2009. "RIEP: Regional integrated energy plan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 285-317, February.
    9. Carolin Mabel, M. & Fernandez, E., 2008. "Growth and future trends of wind energy in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(6), pages 1745-1757, August.
    10. Gass, V. & Strauss, F. & Schmidt, J. & Schmid, E., 2011. "Assessing the effect of wind power uncertainty on profitability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2677-2683, August.
    11. Mathaba, Tebello & Mpholo, Moeketsi & Letuma, Mosuoe, 2012. "Velocity and power density analysis of the wind at Letšeng-la-terae in Lesotho," Renewable Energy, Elsevier, vol. 46(C), pages 210-217.
    12. Sulaiman, M.Yusof & Akaak, Ahmed Mohammed & Wahab, Mahdi Abd & Zakaria, Azmi & Sulaiman, Z.Abidin & Suradi, Jamil, 2002. "Wind characteristics of Oman," Energy, Elsevier, vol. 27(1), pages 35-46.
    13. Ahmed, Ahmed Shata, 2011. "Analysis of electrical power form the wind farm sitting on the Nile River of Aswan, Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1637-1645, April.
    14. Joselin Herbert, G.M. & Iniyan, S. & Sreevalsan, E. & Rajapandian, S., 2007. "A review of wind energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1117-1145, August.
    15. Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
    16. Ko, Kyungnam & Kim, Kyoungbo & Huh, Jongchul, 2010. "Variations of wind speed in time on Jeju Island, Korea," Energy, Elsevier, vol. 35(8), pages 3381-3387.
    17. Calif, Rudy & Emilion, Richard & Soubdhan, Ted, 2011. "Classification of wind speed distributions using a mixture of Dirichlet distributions," Renewable Energy, Elsevier, vol. 36(11), pages 3091-3097.
    18. Bhutto, Abdul Waheed & Bazmi, Aqeel Ahmed & Zahedi, Gholamreza, 2013. "Greener energy: Issues and challenges for Pakistan—wind power prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 519-538.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:10:y:1997:i:4:p:585-611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.