IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v106y2017icp354-364.html
   My bibliography  Save this article

The impact of wind farm location and control strategy on wind generation penetration and market prices

Author

Listed:
  • Awad, Ahmed S.A.
  • Ahmed, Mohamed Hassan
  • El-Fouly, Tarek H.M.
  • Salama, Magdy M.A.

Abstract

Wind energy has become one of the most cost-effective renewable sources nowadays. However, the stochastic nature associated with wind-energy production represents a great challenge for power-system operations. Therefore, probabilistic techniques are necessary to evaluate the performance of power systems with substantial amounts of wind generation. This paper presents a probabilistic based bi-level optimization approach for evaluating the impact of wind farm location and control strategy on the penetration level of wind farms and electricity market prices. The bi-level optimization model is formulated as mathematical program with equilibrium constraints (MPEC) and solved by means of the NLPEC solver in the General Algebraic Modeling System (GAMS) environment. Several cases studies are presented in this paper to determine to the optimal wind generation penetration and market prices with different locations and control strategies for wind farms. Moreover, some scenarios are discussed in regards to the practical allocation of wind farms.

Suggested Citation

  • Awad, Ahmed S.A. & Ahmed, Mohamed Hassan & El-Fouly, Tarek H.M. & Salama, Magdy M.A., 2017. "The impact of wind farm location and control strategy on wind generation penetration and market prices," Renewable Energy, Elsevier, vol. 106(C), pages 354-364.
  • Handle: RePEc:eee:renene:v:106:y:2017:i:c:p:354-364
    DOI: 10.1016/j.renene.2016.12.066
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116311259
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.12.066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steven A. Gabriel & Antonio J. Conejo & J. David Fuller & Benjamin F. Hobbs & Carlos Ruiz, 2013. "Complementarity Modeling in Energy Markets," International Series in Operations Research and Management Science, Springer, edition 127, number 978-1-4419-6123-5, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cuadra, L. & Ocampo-Estrella, I. & Alexandre, E. & Salcedo-Sanz, S., 2019. "A study on the impact of easements in the deployment of wind farms near airport facilities," Renewable Energy, Elsevier, vol. 135(C), pages 566-588.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Megy, Camille & Massol, Olivier, 2023. "Is Power-to-Gas always beneficial? The implications of ownership structure," Energy Economics, Elsevier, vol. 128(C).
    2. Tom Brijs & Daniel Huppmann & Sauleh Siddiqui & Ronnie Belmans, 2016. "Auction-Based Allocation of Shared Electricity Storage Resources through Physical Storage Rights," Discussion Papers of DIW Berlin 1566, DIW Berlin, German Institute for Economic Research.
    3. Savelli, Iacopo & Morstyn, Thomas, 2021. "Electricity prices and tariffs to keep everyone happy: A framework for fixed and nodal prices coexistence in distribution grids with optimal tariffs for investment cost recovery," Omega, Elsevier, vol. 103(C).
    4. Wang, Lu & Gu, Wei & Wu, Zhi & Qiu, Haifeng & Pan, Guangsheng, 2020. "Non-cooperative game-based multilateral contract transactions in power-heating integrated systems," Applied Energy, Elsevier, vol. 268(C).
    5. Savelli, Iacopo & De Paola, Antonio & Li, Furong, 2020. "Ex-ante dynamic network tariffs for transmission cost recovery," Applied Energy, Elsevier, vol. 258(C).
    6. Debia, Sébastien & Pineau, Pierre-Olivier & Siddiqui, Afzal S., 2021. "Strategic storage use in a hydro-thermal power system with carbon constraints," Energy Economics, Elsevier, vol. 98(C).
    7. Reisi, Mohsen & Gabriel, Steven A. & Fahimnia, Behnam, 2019. "Supply chain competition on shelf space and pricing for soft drinks: A bilevel optimization approach," International Journal of Production Economics, Elsevier, vol. 211(C), pages 237-250.
    8. Löschenbrand, Markus, 2020. "Finding multiple Nash equilibria via machine learning-supported Gröbner bases," European Journal of Operational Research, Elsevier, vol. 284(3), pages 1178-1189.
    9. Lee, Chia-Yen & Wang, Ke, 2019. "Nash marginal abatement cost estimation of air pollutant emissions using the stochastic semi-nonparametric frontier," European Journal of Operational Research, Elsevier, vol. 273(1), pages 390-400.
    10. Yelena Vardanyan & Henrik Madsen, 2019. "Stochastic Bilevel Program for Optimal Coordinated Energy Trading of an EV Aggregator," Energies, MDPI, vol. 12(20), pages 1-18, October.
    11. E. Allevi & L. Boffino & M. E. Giuli & G. Oggioni, 2018. "Evaluating the impacts of the external supply risk in a natural gas supply chain: the case of the Italian market," Journal of Global Optimization, Springer, vol. 70(2), pages 347-384, February.
    12. Matar, Walid & Murphy, Frederic & Pierru, Axel & Rioux, Bertrand, 2015. "Lowering Saudi Arabia's fuel consumption and energy system costs without increasing end consumer prices," Energy Economics, Elsevier, vol. 49(C), pages 558-569.
    13. Nikita Belyak & Steven A. Gabriel & Nikolay Khabarov & Fabricio Oliveira, 2023. "Renewable Energy Expansion under Taxes and Subsidies: A Transmission Operator's Perspective," Papers 2302.10562, arXiv.org, revised Apr 2024.
    14. Löschenbrand, Markus & Wei, Wei & Liu, Feng, 2018. "Hydro-thermal power market equilibrium with price-making hydropower producers," Energy, Elsevier, vol. 164(C), pages 377-389.
    15. Afzal S. Siddiqui & Sauleh A. Siddiqui, 2022. "Ambiguities and nonmonotonicities under prosumer power," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 492-532, October.
    16. G. Constante-Flores & A. J. Conejo & S. Constante-Flores, 2022. "Solving certain complementarity problems in power markets via convex programming," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 465-491, October.
    17. Arriet, Andrea & Matis, Timothy I. & Feijoo, Felipe, 2024. "Electricity sector impacts of water taxation for natural gas supply under high renewable generation," Energy, Elsevier, vol. 294(C).
    18. Wolf-Peter Schill & Jonas Egerer & Juan Rosellón, 2015. "Testing regulatory regimes for power transmission expansion with fluctuating demand and wind generation," Journal of Regulatory Economics, Springer, vol. 47(1), pages 1-28, February.
    19. Hélène Le Cadre, 2019. "On the efficiency of local electricity markets under decentralized and centralized designs: a multi-leader Stackelberg game analysis," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(4), pages 953-984, December.
    20. Hassanzadeh Moghimi, Farzad & Boomsma, Trine K. & Siddiqui, Afzal S., 2024. "Transmission planning in an imperfectly competitive power sector with environmental externalities," Energy Economics, Elsevier, vol. 134(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:106:y:2017:i:c:p:354-364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.