IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v105y2017icp232-247.html
   My bibliography  Save this article

Design, modeling, and evaluation of a doublet heat extraction model in enhanced geothermal systems

Author

Listed:
  • Xia, Yidong
  • Plummer, Mitchell
  • Mattson, Earl
  • Podgorney, Robert
  • Ghassemi, Ahmad

Abstract

A conceptual Enhanced Geothermal System (EGS) model, where water is circulated through a pair of parallel injection and production wells connected by a set of single large wing fractures, is designed, modeled, and evaluated in this work. The water circulation and heat extraction in the fractured reservoirs is modeled as a fully coupled process of fluid flow and heat transport. Using a newly developed, open-source, finite element based geothermal simulation code, FALCON, simulation results were obtained for a 30-year operation at a depth of 3 km and geothermal gradient of 65°C per km of depth. With a sensitivity study of the heat production to the design parameters, preferable fracture horizontal spacing, downward deviation angle of the parallel wells, and injection flow rate are recommended. Upscaling calculations of the developed EGS model have shown that, an industrial production-level system may be achievable if it consists of 40 equidistant fractures that connect two 1.2 km long parallel well sections with a well separation of 500 m; and if a system of these dimensions operates for 30 years at a flow rate of 0.1 m3/s, with an electric power output at least 5 MW and pumping power of less than 1 MW. In particular, the performance metrics demonstrated in this work match well with those suggested by others, thus indicating the general applicability of our conceptual models.

Suggested Citation

  • Xia, Yidong & Plummer, Mitchell & Mattson, Earl & Podgorney, Robert & Ghassemi, Ahmad, 2017. "Design, modeling, and evaluation of a doublet heat extraction model in enhanced geothermal systems," Renewable Energy, Elsevier, vol. 105(C), pages 232-247.
  • Handle: RePEc:eee:renene:v:105:y:2017:i:c:p:232-247
    DOI: 10.1016/j.renene.2016.12.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116311235
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.12.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Fangming & Chen, Jiliang & Huang, Wenbo & Luo, Liang, 2014. "A three-dimensional transient model for EGS subsurface thermo-hydraulic process," Energy, Elsevier, vol. 72(C), pages 300-310.
    2. Chen, Jiliang & Jiang, Fangming, 2015. "Designing multi-well layout for enhanced geothermal system to better exploit hot dry rock geothermal energy," Renewable Energy, Elsevier, vol. 74(C), pages 37-48.
    3. Bujakowski, Wiesław & Barbacki, Antoni & Miecznik, Maciej & Pająk, Leszek & Skrzypczak, Robert & Sowiżdżał, Anna, 2015. "Modelling geothermal and operating parameters of EGS installations in the lower triassic sedimentary formations of the central Poland area," Renewable Energy, Elsevier, vol. 80(C), pages 441-453.
    4. Zeng, Yu-Chao & Su, Zheng & Wu, Neng-You, 2013. "Numerical simulation of heat production potential from hot dry rock by water circulating through two horizontal wells at Desert Peak geothermal field," Energy, Elsevier, vol. 56(C), pages 92-107.
    5. Zeng, Yu-Chao & Wu, Neng-You & Su, Zheng & Wang, Xiao-Xing & Hu, Jian, 2013. "Numerical simulation of heat production potential from hot dry rock by water circulating through a novel single vertical fracture at Desert Peak geothermal field," Energy, Elsevier, vol. 63(C), pages 268-282.
    6. Barbier, Enrico, 2002. "Geothermal energy technology and current status: an overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(1-2), pages 3-65.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Qitao & Dahi Taleghani, Arash, 2023. "Autonomous fracture flow tunning to enhance efficiency of fractured geothermal systems," Energy, Elsevier, vol. 281(C).
    2. Lu, Shyi-Min, 2018. "A global review of enhanced geothermal system (EGS)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2902-2921.
    3. Zhang, Jie & Xie, Jingxuan, 2020. "Effect of reservoir’s permeability and porosity on the performance of cellular development model for enhanced geothermal system," Renewable Energy, Elsevier, vol. 148(C), pages 824-838.
    4. Dongdong Liu & Yanyong Xiang, 2019. "A Semi-Analytical Method for Three-Dimensional Heat Transfer in Multi-Fracture Enhanced Geothermal Systems," Energies, MDPI, vol. 12(7), pages 1-11, March.
    5. Kang, Fangchao & Li, Yingchun & Tang, Chun'an & Huang, Xin & Li, Tianjiao, 2022. "Competition between cooling contraction and fluid overpressure on aperture evolution in a geothermal system," Renewable Energy, Elsevier, vol. 186(C), pages 704-716.
    6. Chen, Yun & Wang, Huidong & Li, Tuo & Wang, Yang & Ren, Feng & Ma, Guowei, 2020. "Evaluation of geothermal development considering proppant embedment in hydraulic fractures," Renewable Energy, Elsevier, vol. 153(C), pages 985-997.
    7. Aliyu, Musa D. & Chen, Hua-Peng, 2018. "Enhanced geothermal system modelling with multiple pore media: Thermo-hydraulic coupled processes," Energy, Elsevier, vol. 165(PA), pages 931-948.
    8. Zhang, Chao & Jiang, Guangzheng & Jia, Xiaofeng & Li, Shengtao & Zhang, Shengsheng & Hu, Di & Hu, Shengbiao & Wang, Yibo, 2019. "Parametric study of the production performance of an enhanced geothermal system: A case study at the Qiabuqia geothermal area, northeast Tibetan plateau," Renewable Energy, Elsevier, vol. 132(C), pages 959-978.
    9. Meng, Nan & Li, Tailu & Wang, Jianqiang & Jia, Yanan & Liu, Qinghua & Qin, Haosen, 2020. "Synergetic mechanism of fracture properties and system configuration on techno-economic performance of enhanced geothermal system for power generation during life cycle," Renewable Energy, Elsevier, vol. 152(C), pages 910-924.
    10. Wang, Gaosheng & Song, Xianzhi & Shi, Yu & Yang, Ruiyue & Yulong, Feixue & Zheng, Rui & Li, Jiacheng, 2021. "Heat extraction analysis of a novel multilateral-well coaxial closed-loop geothermal system," Renewable Energy, Elsevier, vol. 163(C), pages 974-986.
    11. Asai, Pranay & Panja, Palash & McLennan, John & Moore, Joseph, 2019. "Efficient workflow for simulation of multifractured enhanced geothermal systems (EGS)," Renewable Energy, Elsevier, vol. 131(C), pages 763-777.
    12. Aliyu, Musa D. & Chen, Hua-Peng, 2017. "Optimum control parameters and long-term productivity of geothermal reservoirs using coupled thermo-hydraulic process modelling," Renewable Energy, Elsevier, vol. 112(C), pages 151-165.
    13. Asai, Pranay & Panja, Palash & McLennan, John & Deo, Milind, 2019. "Effect of different flow schemes on heat recovery from Enhanced Geothermal Systems (EGS)," Energy, Elsevier, vol. 175(C), pages 667-676.
    14. Qiao, Mingzheng & Jing, Zefeng & Feng, Chenchen & Li, Minghui & Chen, Cheng & Zou, Xupeng & Zhou, Yujuan, 2024. "Review on heat extraction systems of hot dry rock: Classifications, benefits, limitations, research status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    15. Moore, Kayla R. & Holländer, Hartmut M., 2020. "Feasibility of low-temperature geothermal systems: Considerations of thermal anomalies, geochemistry, and local assets," Applied Energy, Elsevier, vol. 275(C).
    16. Akdas, Satuk Bugra & Onur, Mustafa, 2022. "Analytical solutions for predicting and optimizing geothermal energy extraction from an enhanced geothermal system with a multiple hydraulically fractured horizontal-well doublet," Renewable Energy, Elsevier, vol. 181(C), pages 567-580.
    17. Zhang, Yu & Zhang, Yanjun & Zhou, Ling & Lei, Zhihong & Guo, Liangliang & Zhou, Jian, 2022. "Reservoir stimulation design and evaluation of heat exploitation of a two-horizontal-well enhanced geothermal system (EGS) in the Zhacang geothermal field, Northwest China," Renewable Energy, Elsevier, vol. 183(C), pages 330-350.
    18. Hou, Xinglan & Zhong, Xiuping & Nie, Shuaishuai & Wang, Yafei & Tu, Guigang & Ma, Yingrui & Liu, Kunyan & Chen, Chen, 2024. "Study on the heat recovery behavior of horizontal well systems in the Qiabuqia geothermal area of the Gonghe Basin, China," Energy, Elsevier, vol. 286(C).
    19. Asai, Pranay & Panja, Palash & McLennan, John & Moore, Joseph, 2018. "Performance evaluation of enhanced geothermal system (EGS): Surrogate models, sensitivity study and ranking key parameters," Renewable Energy, Elsevier, vol. 122(C), pages 184-195.
    20. Han, Songcai & Cheng, Yuanfang & Gao, Qi & Yan, Chuanliang & Zhang, Jincheng, 2020. "Numerical study on heat extraction performance of multistage fracturing Enhanced Geothermal System," Renewable Energy, Elsevier, vol. 149(C), pages 1214-1226.
    21. Asai, Pranay & Podgorney, Robert & McLennan, John & Deo, Milind & Moore, Joseph, 2022. "Analytical model for fluid flow distribution in an Enhanced Geothermal Systems (EGS)," Renewable Energy, Elsevier, vol. 193(C), pages 821-831.
    22. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu & Zhang, Haijun, 2020. "Numerical simulation study on the heat extraction performance of multi-well injection enhanced geothermal system," Renewable Energy, Elsevier, vol. 151(C), pages 782-795.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Tianfu & Yuan, Yilong & Jia, Xiaofeng & Lei, Yude & Li, Shengtao & Feng, Bo & Hou, Zhaoyun & Jiang, Zhenjiao, 2018. "Prospects of power generation from an enhanced geothermal system by water circulation through two horizontal wells: A case study in the Gonghe Basin, Qinghai Province, China," Energy, Elsevier, vol. 148(C), pages 196-207.
    2. Chen, Tairu & Liu, Gang & Liao, Shengming, 2019. "Impacts of boundary conditions on reservoir numerical simulation and performance prediction of enhanced geothermal systems," Energy, Elsevier, vol. 181(C), pages 202-213.
    3. Ding, Junfeng & Wang, Shimin, 2018. "2D modeling of well array operating enhanced geothermal system," Energy, Elsevier, vol. 162(C), pages 918-932.
    4. Yuchao Zeng & Liansheng Tang & Nengyou Wu & Jing Song & Yifei Cao, 2017. "Orthogonal Test Analysis on Conditions Affecting Electricity Generation Performance of an Enhanced Geothermal System at Yangbajing Geothermal Field," Energies, MDPI, vol. 10(12), pages 1-17, December.
    5. Zhang, Yu & Zhang, Yanjun & Zhou, Ling & Lei, Zhihong & Guo, Liangliang & Zhou, Jian, 2022. "Reservoir stimulation design and evaluation of heat exploitation of a two-horizontal-well enhanced geothermal system (EGS) in the Zhacang geothermal field, Northwest China," Renewable Energy, Elsevier, vol. 183(C), pages 330-350.
    6. Asai, Pranay & Panja, Palash & McLennan, John & Moore, Joseph, 2018. "Performance evaluation of enhanced geothermal system (EGS): Surrogate models, sensitivity study and ranking key parameters," Renewable Energy, Elsevier, vol. 122(C), pages 184-195.
    7. Li, Xinxin & Li, Chengyu & Gong, Wenping & Zhang, Yanjie & Wang, Junchao, 2023. "Probabilistic analysis of heat extraction performance in enhanced geothermal system based on a DFN-based modeling scheme," Energy, Elsevier, vol. 263(PC).
    8. Akdas, Satuk Bugra & Onur, Mustafa, 2022. "Analytical solutions for predicting and optimizing geothermal energy extraction from an enhanced geothermal system with a multiple hydraulically fractured horizontal-well doublet," Renewable Energy, Elsevier, vol. 181(C), pages 567-580.
    9. Wei, Xin & Feng, Zi-jun & Zhao, Yang-sheng, 2019. "Numerical simulation of thermo-hydro-mechanical coupling effect in mining fault-mode hot dry rock geothermal energy," Renewable Energy, Elsevier, vol. 139(C), pages 120-135.
    10. Han, Songcai & Cheng, Yuanfang & Gao, Qi & Yan, Chuanliang & Zhang, Jincheng, 2020. "Numerical study on heat extraction performance of multistage fracturing Enhanced Geothermal System," Renewable Energy, Elsevier, vol. 149(C), pages 1214-1226.
    11. Zhang, Yan-Jun & Li, Zheng-Wei & Guo, Liang-Liang & Gao, Ping & Jin, Xian-Peng & Xu, Tian-Fu, 2014. "Electricity generation from enhanced geothermal systems by oilfield produced water circulating through reservoir stimulated by staged fracturing technology for horizontal wells: A case study in Xujiaw," Energy, Elsevier, vol. 78(C), pages 788-805.
    12. Meng, Nan & Li, Tailu & Wang, Jianqiang & Jia, Yanan & Liu, Qinghua & Qin, Haosen, 2020. "Synergetic mechanism of fracture properties and system configuration on techno-economic performance of enhanced geothermal system for power generation during life cycle," Renewable Energy, Elsevier, vol. 152(C), pages 910-924.
    13. Cheng, Wen-Long & Wang, Chang-Long & Nian, Yong-Le & Han, Bing-Bing & Liu, Jian, 2016. "Analysis of influencing factors of heat extraction from enhanced geothermal systems considering water losses," Energy, Elsevier, vol. 115(P1), pages 274-288.
    14. Xiang Gao & Tailu Li & Yao Zhang & Xiangfei Kong & Nan Meng, 2022. "A Review of Simulation Models of Heat Extraction for a Geothermal Reservoir in an Enhanced Geothermal System," Energies, MDPI, vol. 15(19), pages 1-23, September.
    15. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu, 2020. "Study on the effect of well layout schemes and fracture parameters on the heat extraction performance of enhanced geothermal system in fractured reservoir," Energy, Elsevier, vol. 202(C).
    16. Zhu, Jialing & Hu, Kaiyong & Lu, Xinli & Huang, Xiaoxue & Liu, Ketao & Wu, Xiujie, 2015. "A review of geothermal energy resources, development, and applications in China: Current status and prospects," Energy, Elsevier, vol. 93(P1), pages 466-483.
    17. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu & Zhang, Haijun, 2020. "Numerical simulation study on the heat extraction performance of multi-well injection enhanced geothermal system," Renewable Energy, Elsevier, vol. 151(C), pages 782-795.
    18. Zhang, Qitao & Dahi Taleghani, Arash, 2023. "Autonomous fracture flow tunning to enhance efficiency of fractured geothermal systems," Energy, Elsevier, vol. 281(C).
    19. Li, Jiawei & Sun, Zhixue & Zhang, Yin & Jiang, Chuanyin & Cherubini, Claudia & Scheuermann, Alexander & Torres, Sergio Andres Galindo & Li, Ling, 2019. "Investigations of heat extraction for water and CO2 flow based on the rough-walled discrete fracture network," Energy, Elsevier, vol. 189(C).
    20. Gudala, Manojkumar & Govindarajan, Suresh Kumar & Yan, Bicheng & Sun, Shuyu, 2022. "Numerical investigations of the PUGA geothermal reservoir with multistage hydraulic fractures and well patterns using fully coupled thermo-hydro-geomechanical modeling," Energy, Elsevier, vol. 253(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:105:y:2017:i:c:p:232-247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.