IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v101y2017icp1052-1066.html
   My bibliography  Save this article

Effective performance and power transfer operation of a current controlled WRIG based WES in a hybrid grid

Author

Listed:
  • Sowmmiya, U.
  • Uma, G.

Abstract

This paper deals with the performance and possible power transfer modes of Wound Rotor Induction Generator (WRIG) based Wind Energy System (WES) in a hybrid grid (AC and DC Micro grid (DCM)) delivering power in islanded and utility tied conditions. The current controlled Rotor Side Converter (RSC) with its DC end connected to DCM facilitates bidirectional slip power flow. In islanded mode, a decoupled voltage vector control with cascaded PI loops is used for regulating stator voltage and stator frequency. In utility tied mode, reference current generation technique based on Instantaneous Power Theory (IPT) is adopted for slip power transfer by PWM rectification/inversion of RSC. The excitation is supplied via rotor and stator during islanded and utility tied conditions respectively. All possible operational modes are formulated aiming incessant power transfer by WRIG. Maximum power extraction during occasional situations like short circuit faults/low wind/overload and no load claims the merit of the system. The dynamic power transfer operation to maintain the power balance during hybrid mode is analyzed through laboratory experimentation on a 500 W induction machine. Experimental findings confirm the efficacious working of WRIG based WES.

Suggested Citation

  • Sowmmiya, U. & Uma, G., 2017. "Effective performance and power transfer operation of a current controlled WRIG based WES in a hybrid grid," Renewable Energy, Elsevier, vol. 101(C), pages 1052-1066.
  • Handle: RePEc:eee:renene:v:101:y:2017:i:c:p:1052-1066
    DOI: 10.1016/j.renene.2016.09.068
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116308588
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.09.068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rudraraju, Venkata Rama Raju & Chilakapati, Nagamani & Saravana Ilango, G., 2015. "A stator voltage switching strategy for efficient low speed operation of DFIG using fractional rated converters," Renewable Energy, Elsevier, vol. 81(C), pages 389-399.
    2. Gaillard, A. & Poure, P. & Saadate, S. & Machmoum, M., 2009. "Variable speed DFIG wind energy system for power generation and harmonic current mitigation," Renewable Energy, Elsevier, vol. 34(6), pages 1545-1553.
    3. Eleonora Riva Sanseverino & Maria Luisa Di Silvestre & Romina Badalamenti & Ninh Quang Nguyen & Josep Maria Guerrero & Lexuan Meng, 2015. "Optimal Power Flow in Islanded Microgrids Using a Simple Distributed Algorithm," Energies, MDPI, vol. 8(10), pages 1-22, October.
    4. Kaldellis, J.K. & Zafirakis, D., 2007. "Optimum energy storage techniques for the improvement of renewable energy sources-based electricity generation economic efficiency," Energy, Elsevier, vol. 32(12), pages 2295-2305.
    5. Melício, R. & Mendes, V.M.F. & Catalão, J.P.S., 2010. "Power converter topologies for wind energy conversion systems: Integrated modeling, control strategy and performance simulation," Renewable Energy, Elsevier, vol. 35(10), pages 2165-2174.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ademi, Sul & Jovanovic, Milutin, 2016. "Control of doubly-fed reluctance generators for wind power applications," Renewable Energy, Elsevier, vol. 85(C), pages 171-180.
    2. Hossain, Md. Faruque, 2017. "Green science: Independent building technology to mitigate energy, environment, and climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 695-705.
    3. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    4. Rabiee, Abdorreza & Khorramdel, Hossein & Aghaei, Jamshid, 2013. "A review of energy storage systems in microgrids with wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 316-326.
    5. Shukla, Rishabh Dev & Tripathi, Ramesh Kumar & Thakur, Padmanabh, 2017. "DC grid/bus tied DFIG based wind energy system," Renewable Energy, Elsevier, vol. 108(C), pages 179-193.
    6. Sieben, J.M. & Morallón, E. & Cazorla-Amorós, D., 2013. "Flexible ruthenium oxide-activated carbon cloth composites prepared by simple electrodeposition methods," Energy, Elsevier, vol. 58(C), pages 519-526.
    7. Pan, Xunzhang & Teng, Fei & Wang, Gehua, 2014. "A comparison of carbon allocation schemes: On the equity-efficiency tradeoff," Energy, Elsevier, vol. 74(C), pages 222-229.
    8. Sarah Hamdy & Francisco Moser & Tatiana Morosuk & George Tsatsaronis, 2019. "Exergy-Based and Economic Evaluation of Liquefaction Processes for Cryogenics Energy Storage," Energies, MDPI, vol. 12(3), pages 1-19, February.
    9. Adhikari, Jeevan & Sapkota, Rajesh & Panda, S.K., 2018. "Impact of altitude and power rating on power-to-weight and power-to-cost ratios of the high altitude wind power generating system," Renewable Energy, Elsevier, vol. 115(C), pages 16-27.
    10. Amir, Asim & Amir, Aamir & Che, Hang Seng & Elkhateb, Ahmad & Rahim, Nasrudin Abd, 2019. "Comparative analysis of high voltage gain DC-DC converter topologies for photovoltaic systems," Renewable Energy, Elsevier, vol. 136(C), pages 1147-1163.
    11. Abdullah Khan & Hashim Hizam & Noor Izzri bin Abdul Wahab & Mohammad Lutfi Othman, 2020. "Optimal power flow using hybrid firefly and particle swarm optimization algorithm," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-21, August.
    12. Blarke, Morten B. & Jenkins, Bryan M., 2013. "SuperGrid or SmartGrid: Competing strategies for large-scale integration of intermittent renewables?," Energy Policy, Elsevier, vol. 58(C), pages 381-390.
    13. Igyso Zafeiratou & Ionela Prodan & Laurent Lefévre, 2021. "A Hierarchical Control Approach for Power Loss Minimization and Optimal Power Flow within a Meshed DC Microgrid," Energies, MDPI, vol. 14(16), pages 1-27, August.
    14. Zafirakis, D. & Chalvatzis, K. & Kaldellis, J.K., 2013. "“Socially just” support mechanisms for the promotion of renewable energy sources in Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 478-493.
    15. Hernández-Escobedo, Q. & Fernández-García, A. & Manzano-Agugliaro, F., 2017. "Solar resource assessment for rural electrification and industrial development in the Yucatan Peninsula (Mexico)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1550-1561.
    16. Thomas, Dimitrios & Deblecker, Olivier & Ioakimidis, Christos S., 2016. "Optimal design and techno-economic analysis of an autonomous small isolated microgrid aiming at high RES penetration," Energy, Elsevier, vol. 116(P1), pages 364-379.
    17. Catalão, J.P.S. & Pousinho, H.M.I. & Mendes, V.M.F., 2011. "Short-term wind power forecasting in Portugal by neural networks and wavelet transform," Renewable Energy, Elsevier, vol. 36(4), pages 1245-1251.
    18. Jülch, Verena, 2016. "Comparison of electricity storage options using levelized cost of storage (LCOS) method," Applied Energy, Elsevier, vol. 183(C), pages 1594-1606.
    19. M. Rambabu & G. V. Nagesh Kumar & S. Sivanagaraju, 2019. "Optimal Power Flow of Integrated Renewable Energy System using a Thyristor Controlled SeriesCompensator and a Grey-Wolf Algorithm," Energies, MDPI, vol. 12(11), pages 1-18, June.
    20. Foley, A.M. & Ó Gallachóir, B.P. & Hur, J. & Baldick, R. & McKeogh, E.J., 2010. "A strategic review of electricity systems models," Energy, Elsevier, vol. 35(12), pages 4522-4530.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:101:y:2017:i:c:p:1052-1066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.