IDEAS home Printed from https://ideas.repec.org/a/eee/regeco/v66y2017icp28-38.html
   My bibliography  Save this article

A simple randomization test for spatial correlation in the presence of common factors and serial correlation

Author

Listed:
  • Millo, Giovanni

Abstract

A randomization test is proposed for detecting spatial dependence in panel models with cross-sectional dependence induced by an unobserved common factor structure. Spatial dependence is related to the position of observations in space while cross-sectional dependence is generally not; yet spatial correlation tests have power against both. Permuting the pairs of neighbouring observations in the proximity matrix yields a simple spatial dependence test which is robust to the presence of non-spatial cross-sectional correlation, serial correlation and can accommodate short and unbalanced panels. The proposed procedure is evaluated and compared to alternatives through Monte Carlo simulation; it is then illustrated by an application to recent research on technology spillovers. A user-friendly R implementation is provided.

Suggested Citation

  • Millo, Giovanni, 2017. "A simple randomization test for spatial correlation in the presence of common factors and serial correlation," Regional Science and Urban Economics, Elsevier, vol. 66(C), pages 28-38.
  • Handle: RePEc:eee:regeco:v:66:y:2017:i:c:p:28-38
    DOI: 10.1016/j.regsciurbeco.2017.05.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0166046217301692
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.regsciurbeco.2017.05.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arnab Bhattacharjee & Sean Holly, 2011. "Structural interactions in spatial panels," Empirical Economics, Springer, vol. 40(1), pages 69-94, February.
    2. Markus Eberhardt & Christian Helmers & Hubert Strauss, 2013. "Do Spillovers Matter When Estimating Private Returns to R&D?," The Review of Economics and Statistics, MIT Press, vol. 95(2), pages 436-448, May.
    3. Daniel Griffith, 2006. "Hidden negative spatial autocorrelation," Journal of Geographical Systems, Springer, vol. 8(4), pages 335-355, October.
    4. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008. "Nowcasting: The real-time informational content of macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
    5. Holly, Sean & Pesaran, M. Hashem & Yamagata, Takashi, 2010. "A spatio-temporal model of house prices in the USA," Journal of Econometrics, Elsevier, vol. 158(1), pages 160-173, September.
    6. Moscone, F. & Tosetti, E., 2010. "Testing for error cross section independence with an application to US health expenditure," Regional Science and Urban Economics, Elsevier, vol. 40(5), pages 283-291, September.
    7. Julian Besag & Peter J. Diggle, 1977. "Simple Monte Carlo Tests for Spatial Pattern," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 26(3), pages 327-333, November.
    8. Coakley, Jerry & Fuertes, Ana-Maria & Smith, Ron, 2006. "Unobserved heterogeneity in panel time series models," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2361-2380, May.
    9. JAMES G. MacKINNON, 2006. "Bootstrap Methods in Econometrics," The Economic Record, The Economic Society of Australia, vol. 82(s1), pages 2-18, September.
    10. Pesaran, M. Hashem & Tosetti, Elisa, 2011. "Large panels with common factors and spatial correlation," Journal of Econometrics, Elsevier, vol. 161(2), pages 182-202, April.
    11. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, April.
    12. Croissant, Yves & Millo, Giovanni, 2008. "Panel Data Econometrics in R: The plm Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i02).
    13. M. Hashem Pesaran, 2021. "General diagnostic tests for cross-sectional dependence in panels," Empirical Economics, Springer, vol. 60(1), pages 13-50, January.
    14. Natalia Bailey & Sean Holly & M. Hashem Pesaran, 2016. "A Two‐Stage Approach to Spatio‐Temporal Analysis with Strong and Weak Cross‐Sectional Dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(1), pages 249-280, January.
    15. Lung‐fei Lee & Jihai Yu, 2012. "Spatial Panels: Random Components Versus Fixed Effects," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(4), pages 1369-1412, November.
    16. Baltagi, Badi H. & Heun Song, Seuck & Cheol Jung, Byoung & Koh, Won, 2007. "Testing for serial correlation, spatial autocorrelation and random effects using panel data," Journal of Econometrics, Elsevier, vol. 140(1), pages 5-51, September.
    17. Domenico Giannone & Lucrezia Reichlin & David Small, 2008. "Nowcasting: the real time informational content of macroeconomic data releases," ULB Institutional Repository 2013/6409, ULB -- Universite Libre de Bruxelles.
    18. Giovanni Millo, 2015. "Narrow Replication of ‘A Spatio‐Temporal Model of House Prices in the Usa’ Using R," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 703-704, June.
    19. M. Hashem Pesaran, 2015. "Testing Weak Cross-Sectional Dependence in Large Panels," Econometric Reviews, Taylor & Francis Journals, vol. 34(6-10), pages 1089-1117, December.
    20. Domenico Giannone & Lucrezia Reichlin & David H. Small, 2005. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Finance and Economics Discussion Series 2005-42, Board of Governors of the Federal Reserve System (U.S.).
    21. Millo, Giovanni, 2014. "Maximum likelihood estimation of spatially and serially correlated panels with random effects," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 914-933.
    22. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    23. Millo, Giovanni & Piras, Gianfranco, 2012. "splm: Spatial Panel Data Models in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 47(i01).
    24. Giovanni Millo & Gaetano Carmeci, 2011. "Non-life insurance consumption in Italy: a sub-regional panel data analysis," Journal of Geographical Systems, Springer, vol. 13(3), pages 273-298, September.
    25. Jushan Bai, 2009. "Panel Data Models With Interactive Fixed Effects," Econometrica, Econometric Society, vol. 77(4), pages 1229-1279, July.
    26. Francesco Moscone & Elisa Tosetti, 2009. "A Review And Comparison Of Tests Of Cross‐Section Independence In Panels," Journal of Economic Surveys, Wiley Blackwell, vol. 23(3), pages 528-561, July.
    27. Michael Pfaffermayr, 2013. "The Cliff and Ord Test for Spatial Correlation of the Disturbances in Unbalanced Panel Models," International Regional Science Review, , vol. 36(4), pages 492-506, October.
    28. Pedro V. Amaral & Luc Anselin, 2014. "Finite sample properties of Moran's I test for spatial autocorrelation in tobit models," Papers in Regional Science, Wiley Blackwell, vol. 93(4), pages 773-781, November.
    29. repec:hal:journl:peer-00796743 is not listed on IDEAS
    30. Joris Pinkse & Margaret E. Slade, 2010. "The Future Of Spatial Econometrics," Journal of Regional Science, Wiley Blackwell, vol. 50(1), pages 103-117, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ebba Mark & Ryan Rafaty & Moritz Schwarz, 2022. "Spatial-temporal dynamics of employment shocks in declining coal mining regions and potentialities of the 'just transition'," Papers 2211.12619, arXiv.org.
    2. Hanen Ragoubi & Zouheir Mighri, 2021. "Spillover effects of trade openness on CO2 emissions in middle‐income countries: A spatial panel data approach," Regional Science Policy & Practice, Wiley Blackwell, vol. 13(3), pages 835-877, June.
    3. Carmelo Algeri & Antonio F. Forgione & Carlo Migliardo, 2022. "Do spatial dependence and market power matter in the diversification of cooperative banks?," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 51(3), November.
    4. Anna Gloria Billé & Marco Rogna, 2022. "The effect of weather conditions on fertilizer applications: A spatial dynamic panel data analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 3-36, January.
    5. Heng Chen & Matthew Strathearn, 2020. "A Spatial Model of Bank Branches in Canada," Staff Working Papers 20-4, Bank of Canada.
    6. Elhorst, J. Paul & Madre, Jean-Loup & Pirotte, Alain, 2020. "Car traffic, habit persistence, cross-sectional dependence, and spatial heterogeneity: New insights using French departmental data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 614-632.
    7. Carmelo Algeri & Luc Anselin & Antonio Fabio Forgione & Carlo Migliardo, 2022. "Spatial dependence in the technical efficiency of local banks," Papers in Regional Science, Wiley Blackwell, vol. 101(3), pages 685-716, June.
    8. Alexey, Kurbatskiy & Nikita, Artamonov & Timur, Khalimov, 2020. "Взаимосвязь Экономического Развития И Возрастной Структуры Населения Регионов Российской Федерации [Relationship between economic development and the population age structure of Russian Federation ," MPRA Paper 105273, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roger Bivand & Giovanni Millo & Gianfranco Piras, 2021. "A Review of Software for Spatial Econometrics in R," Mathematics, MDPI, vol. 9(11), pages 1-40, June.
    2. Markus Eberhardt & Francis Teal, 2010. "Aggregation versus Heterogeneity in Cross-Country Growth Empirics," CSAE Working Paper Series 2010-32, Centre for the Study of African Economies, University of Oxford.
    3. Millo, Giovanni, 2014. "Maximum likelihood estimation of spatially and serially correlated panels with random effects," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 914-933.
    4. Markus Eberhardt & Andrea Filippo Presbitero, 2013. "This Time They're Different: Heterogeneity;and Nonlinearity in the Relationship;between Debt and Growth," Mo.Fi.R. Working Papers 92, Money and Finance Research group (Mo.Fi.R.) - Univ. Politecnica Marche - Dept. Economic and Social Sciences.
    5. Markus Eberhardt & Francis Teal, 2011. "Econometrics For Grumblers: A New Look At The Literature On Cross‐Country Growth Empirics," Journal of Economic Surveys, Wiley Blackwell, vol. 25(1), pages 109-155, February.
    6. Markus Eberhardt & Francis Teal, 2008. "Modeling Technology and Technological Change in Manufacturing: How do Countries Differ?," CSAE Working Paper Series 2008-12, Centre for the Study of African Economies, University of Oxford.
    7. Diego-Ivan Ruge-Leiva, 2014. "International R&D spillovers and unobserved common shocks," Working Papers 08/14, Instituto Universitario de Análisis Económico y Social.
    8. Delwar Hossain, 2014. "Differential Impacts of Foreign Capital and Remittance Inflows on Domestic Savings in the Developing Countries: A Dynamic Heterogeneous Panel Analysis," Departmental Working Papers 2014-07, The Australian National University, Arndt-Corden Department of Economics.
    9. Arnab Bhattacharjee & Sean Holly, 2011. "Structural interactions in spatial panels," Empirical Economics, Springer, vol. 40(1), pages 69-94, February.
    10. Ant Afonso & João Tovar Jalles, 2014. "Fiscal composition and long-term growth," Applied Economics, Taylor & Francis Journals, vol. 46(3), pages 349-358, January.
    11. Evan Totty, 2017. "The Effect Of Minimum Wages On Employment: A Factor Model Approach," Economic Inquiry, Western Economic Association International, vol. 55(4), pages 1712-1737, October.
    12. George Kapetanios & Laura Serlenga & Yongcheol Shin, 2023. "Testing for correlation between the regressors and factor loadings in heterogeneous panels with interactive effects," Empirical Economics, Springer, vol. 64(6), pages 2611-2659, June.
    13. Daniel Goya, 2014. "The Multiple Impacts of the Exchange Rate on Export Diversification," Cambridge Working Papers in Economics 1436, Faculty of Economics, University of Cambridge.
    14. Daniel M. Bernhofen & Markus Eberhardt & Jianan Li & Stephen Morgan, 2015. "Assessing Market (Dis)Integration in Early Modern China and Europe," CESifo Working Paper Series 5580, CESifo.
    15. Aninday Banerjee & Markus Eberhardt & J James Reade, 2010. "Panel Estimation for Worriers," Discussion Papers 10-33, Department of Economics, University of Birmingham.
    16. Giovanni Millo, 2016. "The Income Elasticity of Nonlife Insurance: A Reassessment," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 83(2), pages 335-362, June.
    17. Markus Eberhardt & Christian Helmers & Hubert Strauss, 2013. "Do Spillovers Matter When Estimating Private Returns to R&D?," The Review of Economics and Statistics, MIT Press, vol. 95(2), pages 436-448, May.
    18. Cynthia Fan Yang, 2021. "Common factors and spatial dependence: an application to US house prices," Econometric Reviews, Taylor & Francis Journals, vol. 40(1), pages 14-50, January.
    19. Gopal K. Basak & Arnab Bhattacharjee & Samarjit Das, 2018. "Causal ordering and inference on acyclic networks," Empirical Economics, Springer, vol. 55(1), pages 213-232, August.
    20. Afonso, António & Jalles, João Tovar, 2013. "Growth and productivity: The role of government debt," International Review of Economics & Finance, Elsevier, vol. 25(C), pages 384-407.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:regeco:v:66:y:2017:i:c:p:28-38. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/regec .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.