IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v94y2009i6p1128-1132.html
   My bibliography  Save this article

Testing statistical significance of trends in learning, ageing and safety indicators

Author

Listed:
  • Viertävä, Janne
  • Vaurio, Jussi K.

Abstract

A relatively new subject for probabilistic safety methodology is statistical analysis of trends in observed failures and other safety indicators reflecting ageing or learning in operational and maintenance experience at industrial facilities. Random variations of the indicators can mask real changes or cause false alarms. Methodology is proposed for testing statistical significance of apparent trends in safety indicators. Improved methods are developed for detecting both monotonic and non-monotonic trends, some demonstrated by simulation studies and real examples to be more powerful than those known so far. An effective way to use standard trend tests with transformed data for testing exponentiality of data is also demonstrated and found superior to a well-known Lilliefors’ goodness-of-fit test.

Suggested Citation

  • Viertävä, Janne & Vaurio, Jussi K., 2009. "Testing statistical significance of trends in learning, ageing and safety indicators," Reliability Engineering and System Safety, Elsevier, vol. 94(6), pages 1128-1132.
  • Handle: RePEc:eee:reensy:v:94:y:2009:i:6:p:1128-1132
    DOI: 10.1016/j.ress.2008.11.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832008002767
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2008.11.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vaurio, Jussi K. & Jänkälä, Kalle E., 2006. "Evaluation and comparison of estimation methods for failure rates and probabilities," Reliability Engineering and System Safety, Elsevier, vol. 91(2), pages 209-221.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rajkumar Bhimgonda Patil & Basavraj S Kothavale & Laxman Yadu Waghmode, 2019. "Selection of time-to-failure model for computerized numerical control turning center based on the assessment of trends in maintenance data," Journal of Risk and Reliability, , vol. 233(2), pages 105-117, April.
    2. Hamzeh Soltanali & A.H.S Garmabaki & Adithya Thaduri & Aditya Parida & Uday Kumar & Abbas Rohani, 2019. "Sustainable production process: An application of reliability, availability, and maintainability methodologies in automotive manufacturing," Journal of Risk and Reliability, , vol. 233(4), pages 682-697, August.
    3. Syamsundar, A. & Naikan, V.N.A. & Wu, Shaomin, 2021. "Extended Arithmetic Reduction of Age Models for the Failure Process of a Repairable System," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    4. Garmabaki, A.H.S. & Ahmadi, Alireza & Block, Jan & Pham, Hoang & Kumar, Uday, 2016. "A reliability decision framework for multiple repairable units," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 78-88.
    5. Regattieri, A. & Manzini, R. & Battini, D., 2010. "Estimating reliability characteristics in the presence of censored data: A case study in a light commercial vehicle manufacturing system," Reliability Engineering and System Safety, Elsevier, vol. 95(10), pages 1093-1102.
    6. Gámiz, Maria Luz & Nozal-Cañadas, Rafael & Raya-Miranda, Rocío, 2020. "TTT-SiZer: A graphic tool for aging trends recognition," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    7. Louit, D.M. & Pascual, R. & Jardine, A.K.S., 2009. "A practical procedure for the selection of time-to-failure models based on the assessment of trends in maintenance data," Reliability Engineering and System Safety, Elsevier, vol. 94(10), pages 1618-1628.
    8. Zhi-Ming Wang & Xia Yu, 2013. "Log-linear process modeling for repairable systems with time trends and its applications in reliability assessment of numerically controlled machine tools," Journal of Risk and Reliability, , vol. 227(1), pages 55-65, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Quigley, John & Hardman, Gavin & Bedford, Tim & Walls, Lesley, 2011. "Merging expert and empirical data for rare event frequency estimation: Pool homogenisation for empirical Bayes models," Reliability Engineering and System Safety, Elsevier, vol. 96(6), pages 687-695.
    2. Chen, Qian & Zuo, Lili & Wu, Changchun & Li, Yun & Hua, Kaixun & Mehrtash, Mahdi & Cao, Yankai, 2022. "Optimization of compressor standby schemes for gas transmission pipeline systems based on gas delivery reliability," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    3. Diaz, Juan Esteban & Handl, Julia & Xu, Dong-Ling, 2018. "Integrating meta-heuristics, simulation and exact techniques for production planning of a failure-prone manufacturing system," European Journal of Operational Research, Elsevier, vol. 266(3), pages 976-989.
    4. Strigini, Lorenzo & Wright, David, 2014. "Bounds on survival probability given mean probability of failure per demand; and the paradoxical advantages of uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 128(C), pages 66-83.
    5. Quigley, John & Walls, Lesley, 2011. "Mixing Bayes and empirical Bayes inference to anticipate the realization of engineering concerns about variant system designs," Reliability Engineering and System Safety, Elsevier, vol. 96(8), pages 933-941.
    6. Hu, Shenping & Fang, Quangen & Xia, Haibo & Xi, Yongtao, 2007. "Formal safety assessment based on relative risks model in ship navigation," Reliability Engineering and System Safety, Elsevier, vol. 92(3), pages 369-377.
    7. Zhao, Xingyu & Littlewood, Bev & Povyakalo, Andrey & Strigini, Lorenzo & Wright, David, 2018. "Conservative claims for the probability of perfection of a software-based system using operational experience of previous similar systems," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 265-282.
    8. Quigley, John & Bedford, Tim & Walls, Lesley, 2007. "Estimating rate of occurrence of rare events with empirical bayes: A railway application," Reliability Engineering and System Safety, Elsevier, vol. 92(5), pages 619-627.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:94:y:2009:i:6:p:1128-1132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.