IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v94y2009i6p1107-1115.html
   My bibliography  Save this article

Integrated system fault diagnostics utilising digraph and fault tree-based approaches

Author

Listed:
  • Bartlett, L.M.
  • Hurdle, E.E.
  • Kelly, E.M.

Abstract

With the growing intolerance to failures within systems, the issue of fault diagnosis has become ever prevalent. Information concerning these possible failures can help to minimise the disruption to the functionality of the system by allowing quick rectification. Traditional approaches to fault diagnosis within engineering systems have focused on sequential testing procedures and real-time mechanisms. Both methods have been predominantly limited to single fault causes. Latest approaches also consider the issue of multiple faults in reflection to the characteristics of modern day systems designed for high reliability. In addition, a diagnostic capability is required in real time and for changeable system functionality. This paper focuses on two approaches which have been developed to cater for the demands of diagnosis within current engineering systems, namely application of the fault tree analysis technique and the method of digraphs. Both use a comparative approach to consider differences between actual system behaviour and that expected. The procedural guidelines are discussed for each method, with an experimental aircraft fuel system used to test and demonstrate the features of the techniques. The effectiveness of the approaches is compared and their future potential highlighted.

Suggested Citation

  • Bartlett, L.M. & Hurdle, E.E. & Kelly, E.M., 2009. "Integrated system fault diagnostics utilising digraph and fault tree-based approaches," Reliability Engineering and System Safety, Elsevier, vol. 94(6), pages 1107-1115.
  • Handle: RePEc:eee:reensy:v:94:y:2009:i:6:p:1107-1115
    DOI: 10.1016/j.ress.2008.12.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832009000192
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2008.12.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. E. E. Hurdle & L. M. Bartlett & J. D. Andrews, 2007. "System fault diagnostics using fault tree analysis," Journal of Risk and Reliability, , vol. 221(1), pages 43-55, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Lu & Xu, Zhengguo & Wang, Wenhai & Sun, Youxian, 2013. "A new fault detection method for computer networks," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 45-51.
    2. Santosh B. Rane & Yahya A. M. Narvel, 2016. "Reliability assessment and improvement of air circuit breaker (ACB) mechanism by identifying and eliminating the root causes," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(1), pages 305-321, December.
    3. Babaleye, Ahmed O. & Kurt, Rafet Emek & Khan, Faisal, 2019. "Safety analysis of plugging and abandonment of oil and gas wells in uncertain conditions with limited data," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 133-141.
    4. Ajith Tom James & O. P. Gandhi & S. G. Deshmukh, 2018. "Fault diagnosis of automobile systems using fault tree based on digraph modeling," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(2), pages 494-508, April.
    5. Yılmaz, Emre & German, Brian J. & Pritchett, Amy R., 2023. "Optimizing resource allocations to improve system reliability via the propagation of statistical moments through fault trees," Reliability Engineering and System Safety, Elsevier, vol. 230(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ajith Tom James & O. P. Gandhi & S. G. Deshmukh, 2018. "Fault diagnosis of automobile systems using fault tree based on digraph modeling," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(2), pages 494-508, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:94:y:2009:i:6:p:1107-1115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.