IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v94y2009i10p1557-1567.html
   My bibliography  Save this article

A human–machine interface evaluation method: A difficulty evaluation method in information searching (DEMIS)

Author

Listed:
  • Ha, Jun Su
  • Seong, Poong Hyun

Abstract

A human–machine interface (HMI) evaluation method, which is named “difficulty evaluation method in information searching (DEMIS)†, is proposed and demonstrated with an experimental study. The DEMIS is based on a human performance model and two measures of attentional-resource effectiveness in monitoring and detection tasks in nuclear power plants (NPPs). Operator competence and HMI design are modeled to be most significant factors to human performance. One of the two effectiveness measures is fixation-to-importance ratio (FIR) which represents attentional resource (eye fixations) spent on an information source compared to importance of the information source. The other measure is selective attention effectiveness (SAE) which incorporates FIRs for all information sources. The underlying principle of the measures is that the information source should be selectively attended to according to its informational importance. In this study, poor performance in information searching tasks is modeled to be coupled with difficulties caused by poor mental models of operators or/and poor HMI design. Human performance in information searching tasks is evaluated by analyzing the FIR and the SAE. Operator mental models are evaluated by a questionnaire-based method. Then difficulties caused by a poor HMI design are evaluated by a focused interview based on the FIR evaluation and then root causes leading to poor performance are identified in a systematic way.

Suggested Citation

  • Ha, Jun Su & Seong, Poong Hyun, 2009. "A human–machine interface evaluation method: A difficulty evaluation method in information searching (DEMIS)," Reliability Engineering and System Safety, Elsevier, vol. 94(10), pages 1557-1567.
  • Handle: RePEc:eee:reensy:v:94:y:2009:i:10:p:1557-1567
    DOI: 10.1016/j.ress.2009.02.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832009000647
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2009.02.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jun Su Ha & Poong Hyun Seong, 2009. "HUPESS: Human Performance Evaluation Support System," Springer Series in Reliability Engineering, in: Poong Hyun Seong (ed.), Reliability and Risk Issues in Large Scale Safety-critical Digital Control Systems, chapter 9, pages 197-229, Springer.
    2. Kim, Man Cheol & Seong, Poong Hyun, 2006. "A computational model for knowledge-driven monitoring of nuclear power plant operators based on information theory," Reliability Engineering and System Safety, Elsevier, vol. 91(3), pages 283-291.
    3. Kim, Man Cheol & Seong, Poong Hyun, 2006. "An analytic model for situation assessment of nuclear power plant operators based on Bayesian inference," Reliability Engineering and System Safety, Elsevier, vol. 91(3), pages 270-282.
    4. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Naderpour, Mohsen & Lu, Jie & Zhang, Guangquan, 2015. "An abnormal situation modeling method to assist operators in safety-critical systems," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 33-47.
    2. Zhang, Xiaoge & Mahadevan, Sankaran & Lau, Nathan & Weinger, Matthew B., 2020. "Multi-source information fusion to assess control room operator performance," Reliability Engineering and System Safety, Elsevier, vol. 194(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Hyun-Chul & Seong, Poong-Hyun, 2009. "A computational model for evaluating the effects of attention, memory, and mental models on situation assessment of nuclear power plant operators," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1796-1805.
    2. Banai, Reza, 2010. "Evaluation of land use-transportation systems with the Analytic Network Process," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 3(1), pages 85-112.
    3. Pishchulov, Grigory & Trautrims, Alexander & Chesney, Thomas & Gold, Stefan & Schwab, Leila, 2019. "The Voting Analytic Hierarchy Process revisited: A revised method with application to sustainable supplier selection," International Journal of Production Economics, Elsevier, vol. 211(C), pages 166-179.
    4. Seung-Jin Han & Won-Jae Lee & So-Hee Kim & Sang-Hoon Yoon & Hyunwoong Pyun, 2022. "Assessing Expected Long-term Benefits for the Olympic Games: Delphi-AHP Approach from Korean Olympic Experts," SAGE Open, , vol. 12(4), pages 21582440221, December.
    5. Seyed Rakhshan & Ali Kamyad & Sohrab Effati, 2015. "Ranking decision-making units by using combination of analytical hierarchical process method and Tchebycheff model in data envelopment analysis," Annals of Operations Research, Springer, vol. 226(1), pages 505-525, March.
    6. V. Srinivasan & G. Shainesh & Anand K. Sharma, 2015. "An approach to prioritize customer-based, cost-effective service enhancements," The Service Industries Journal, Taylor & Francis Journals, vol. 35(14), pages 747-762, October.
    7. Mónica García-Melón & Blanca Pérez-Gladish & Tomás Gómez-Navarro & Paz Mendez-Rodriguez, 2016. "Assessing mutual funds’ corporate social responsibility: a multistakeholder-AHP based methodology," Annals of Operations Research, Springer, vol. 244(2), pages 475-503, September.
    8. Luis Pérez-Domínguez & Luis Alberto Rodríguez-Picón & Alejandro Alvarado-Iniesta & David Luviano Cruz & Zeshui Xu, 2018. "MOORA under Pythagorean Fuzzy Set for Multiple Criteria Decision Making," Complexity, Hindawi, vol. 2018, pages 1-10, April.
    9. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    10. Kumar B, Pradeep, 2021. "Changing Objectives of Firms and Managerial Preferences: A Review of Models in Microeconomics," MPRA Paper 106967, University Library of Munich, Germany, revised 13 Mar 2021.
    11. Greco, Salvatore & Ishizaka, Alessio & Tasiou, Menelaos & Torrisi, Gianpiero, 2018. "σ-µ efficiency analysis: A new methodology for evaluating units through composite indices," MPRA Paper 83569, University Library of Munich, Germany.
    12. Anirban Mukhopadhyay & Sugata Hazra & Debasish Mitra & C. Hutton & Abhra Chanda & Sandip Mukherjee, 2016. "Characterizing the multi-risk with respect to plausible natural hazards in the Balasore coast, Odisha, India: a multi-criteria analysis (MCA) appraisal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1495-1513, February.
    13. Chamoli, Sunil, 2015. "Hybrid FAHP (fuzzy analytical hierarchy process)-FTOPSIS (fuzzy technique for order preference by similarity of an ideal solution) approach for performance evaluation of the V down perforated baffle r," Energy, Elsevier, vol. 84(C), pages 432-442.
    14. H. S. C. Perera & W. K. R. Costa, 2008. "Analytic Hierarchy Process for Selection of Erp Software for Manufacturing Companies," Vision, , vol. 12(4), pages 1-11, October.
    15. G. La Scalia & F.P. Marra & J. Rühl & R. Sciortino & T. Caruso, 2016. "A fuzzy multi-criteria decision-making methodology to optimise olive agro-engineering processes based on geo-spatial technologies," International Journal of Management and Decision Making, Inderscience Enterprises Ltd, vol. 15(1), pages 1-15.
    16. Andersen, Steffen & Harrison, Glenn W. & Lau, Morten Igel & Rutström, Elisabet E., 2014. "Dual criteria decisions," Journal of Economic Psychology, Elsevier, vol. 41(C), pages 101-113.
      • Andersen, Steffen & Harrison, Glenn W. & Lau, Morten Igel & Rutström, Elisabet, 2009. "Dual Criteria Decisions," Working Papers 02-2009, Copenhagen Business School, Department of Economics.
    17. Mulliner, Emma & Smallbone, Kieran & Maliene, Vida, 2013. "An assessment of sustainable housing affordability using a multiple criteria decision making method," Omega, Elsevier, vol. 41(2), pages 270-279.
    18. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Determination of the Most Optimal On-Shore Wind Farm Site Location Using a GIS-MCDM Methodology: Evaluating the Case of South Korea," Energies, MDPI, vol. 10(12), pages 1-22, December.
    19. Majid Ebrahimi & Hamid Nejadsoleymani & Mohammad Reza Mansouri Daneshvar, 2019. "Land suitability map and ecological carrying capacity for the recognition of touristic zones in the Kalat region, Iran: a multi-criteria analysis based on AHP and GIS," Asia-Pacific Journal of Regional Science, Springer, vol. 3(3), pages 697-718, October.
    20. Zeshui Xu, 2013. "Compatibility Analysis of Intuitionistic Fuzzy Preference Relations in Group Decision Making," Group Decision and Negotiation, Springer, vol. 22(3), pages 463-482, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:94:y:2009:i:10:p:1557-1567. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.