About time-variant reliability analysis with reference to passive systems assessment
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ress.2008.01.002
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Burgazzi, Luciano, 2007. "Thermal–hydraulic passive system reliability-based design approach," Reliability Engineering and System Safety, Elsevier, vol. 92(9), pages 1250-1257.
- Burgazzi, Luciano, 2007. "State of the art in reliability of thermal-hydraulic passive systems," Reliability Engineering and System Safety, Elsevier, vol. 92(5), pages 671-675.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zio, E. & Pedroni, N., 2012. "Monte Carlo simulation-based sensitivity analysis of the model of a thermal–hydraulic passive system," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 90-106.
- Qian, Hua-Ming & Li, Yan-Feng & Huang, Hong-Zhong, 2020. "Time-variant reliability analysis for industrial robot RV reducer under multiple failure modes using Kriging model," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
- Rougé, Charles & Mathias, Jean-Denis & Deffuant, Guillaume, 2014. "Relevance of control theory to design and maintenance problems in time-variant reliability: The case of stochastic viability," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 250-260.
- Qian, Hua-Ming & Li, Yan-Feng & Huang, Hong-Zhong, 2021. "Time-variant system reliability analysis method for a small failure probability problem," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
- Francesco Di Maio & Nicola Pedroni & Barnabás Tóth & Luciano Burgazzi & Enrico Zio, 2021. "Reliability Assessment of Passive Safety Systems for Nuclear Energy Applications: State-of-the-Art and Open Issues," Energies, MDPI, vol. 14(15), pages 1-17, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zio, E. & Pedroni, N., 2012. "Monte Carlo simulation-based sensitivity analysis of the model of a thermal–hydraulic passive system," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 90-106.
- Francesco Di Maio & Nicola Pedroni & Barnabás Tóth & Luciano Burgazzi & Enrico Zio, 2021. "Reliability Assessment of Passive Safety Systems for Nuclear Energy Applications: State-of-the-Art and Open Issues," Energies, MDPI, vol. 14(15), pages 1-17, August.
- Olatubosun, Samuel Abiodun & Zhang, Zhijian, 2019. "Dependency consideration of passive system reliability by coupled stress-strength interference/functional relations of parameters approach," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 549-560.
- Dube, Donald A. & Sherry, Richard R. & Gabor, Jeffery R. & Hess, Stephen M., 2014. "Application of risk informed safety margin characterization to extended power uprate analysis," Reliability Engineering and System Safety, Elsevier, vol. 129(C), pages 19-28.
- Zio, E. & Pedroni, N., 2009. "Functional failure analysis of a thermal–hydraulic passive system by means of Line Sampling," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1764-1781.
- Woo, Tae-Ho & Lee, Un-Chul, 2010. "Safety assessment for the passive system of the nuclear power plants (NPPs) using safety margin estimation," Energy, Elsevier, vol. 35(4), pages 1799-1804.
- Jin, Kyungho & Kim, Hyeonmin & Ryu, Seunghyoung & Kim, Seunggeun & Park, Jinkyun, 2022. "An approach to constructing effective training data for a classification model to evaluate the reliability of a passive safety system," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
- Zio, Enrico & Di Maio, Francesco & Tong, Jiejuan, 2010. "Safety margins confidence estimation for a passive residual heat removal system," Reliability Engineering and System Safety, Elsevier, vol. 95(8), pages 828-836.
- Pedroni, N. & Zio, E. & Apostolakis, G.E., 2010. "Comparison of bootstrapped artificial neural networks and quadratic response surfaces for the estimation of the functional failure probability of a thermal–hydraulic passive system," Reliability Engineering and System Safety, Elsevier, vol. 95(4), pages 386-395.
- Arul, A. John & Iyer, N. Kannan & Velusamy, K., 2009. "Adjoint operator approach to functional reliability analysis of passive fluid dynamical systems," Reliability Engineering and System Safety, Elsevier, vol. 94(12), pages 1917-1926.
More about this item
Keywords
Time-variant; Functional reliability; Passive system;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:93:y:2008:i:11:p:1682-1688. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.