IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v92y2007i5p585-592.html
   My bibliography  Save this article

Two fault classification methods for large systems when available data are limited

Author

Listed:
  • Kim, Kyungmee O.
  • Zuo, Ming J.

Abstract

In this paper, we consider the problem of fault diagnosis for a system with many possible fault types. Two approaches are presented that are useful for initial diagnosis of system-wide faults, assuming that no data are available before commissioning the system but the possibility of the occurrence of each symptom is known for each fault. The first method uses a fault tree approach to reduce the solution space before applying the geometric classification method, the assumption being that no unwanted symptoms are possible. This method is nonparametric and thus does not require any data to estimate the underlying distribution of faults and symptoms. The second method is based on the Bayes classification approach to utilize the subjective information and the limited data that may be available. The two methods are generic and applicable to a variety of industrial processes.

Suggested Citation

  • Kim, Kyungmee O. & Zuo, Ming J., 2007. "Two fault classification methods for large systems when available data are limited," Reliability Engineering and System Safety, Elsevier, vol. 92(5), pages 585-592.
  • Handle: RePEc:eee:reensy:v:92:y:2007:i:5:p:585-592
    DOI: 10.1016/j.ress.2006.02.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832006000433
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2006.02.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Lu & Xu, Zhengguo & Wang, Wenhai & Sun, Youxian, 2013. "A new fault detection method for computer networks," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 45-51.
    2. Gómez, M.J. & Castejón, C. & García-Prada, J.C., 2016. "Automatic condition monitoring system for crack detection in rotating machinery," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 239-247.
    3. Enrico Zio & Piero Baraldi & Irina C. Popescu, 2008. "A Fuzzy Decision Tree for Fault Classification," Risk Analysis, John Wiley & Sons, vol. 28(1), pages 49-67, February.
    4. Huang, Keke & Tao, Shijun & Wu, Dehao & Yang, Chunhua & Gui, Weihua, 2024. "Robust condition identification against label noise in industrial processes based on trusted connection dictionary learning," Reliability Engineering and System Safety, Elsevier, vol. 247(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:92:y:2007:i:5:p:585-592. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.