IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v90y2005i1p15-24.html
   My bibliography  Save this article

On the use of risk acceptance criteria in the offshore oil and gas industry

Author

Listed:
  • Aven, Terje
  • Vinnem, Jan Erik

Abstract

Risk acceptance criteria, as upper limits of acceptable risks, have been used for offshore activities on the Norwegian Continental Shelf for more than 20 years. The common thinking has been that risk analyses and assessments cannot be conducted in a meaningful way without the use of such criteria. The ALARP principle also applies, but the risk acceptance criteria have played a more active role in the assessment processes than seen for example in the UK. Recently there has, however, been a discussion about the suitability of risk acceptance criteria to assess and control risks. The purpose of this paper is to contribute to this discussion by presenting and discussing a risk analysis regime that is not based on the use of risk acceptance criteria at all. We believe that we can do better if cost-effectiveness (in a wide sense) is the ruling thinking rather than adoption of pre-defined risk acceptance limits. This means a closer resemblance with the ALARP principle as adopted in the UK and other countries, but is not a direct application of this practice. Also the building blocks of the common way of applying the ALARP principle are reviewed. The Norwegian offshore oil and gas industry is the starting point, but the discussion is to large extent general.

Suggested Citation

  • Aven, Terje & Vinnem, Jan Erik, 2005. "On the use of risk acceptance criteria in the offshore oil and gas industry," Reliability Engineering and System Safety, Elsevier, vol. 90(1), pages 15-24.
  • Handle: RePEc:eee:reensy:v:90:y:2005:i:1:p:15-24
    DOI: 10.1016/j.ress.2004.10.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832004002595
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2004.10.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Terje Aven, 2012. "Foundational Issues in Risk Assessment and Risk Management," Risk Analysis, John Wiley & Sons, vol. 32(10), pages 1647-1656, October.
    2. Cerqueti, Roy & Lupi, Claudio, 2015. "Consistent Risk Acceptance Criteria through Networks," Economics & Statistics Discussion Papers esdp15076, University of Molise, Department of Economics.
    3. Langdalen, Henrik & Abrahamsen, Eirik Bjorheim & Selvik, Jon Tømmerås, 2020. "On the importance of systems thinking when using the ALARP principle for risk management," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    4. Sujan, Mark A. & Habli, Ibrahim & Kelly, Tim P. & Gühnemann, Astrid & Pozzi, Simone & Johnson, Christopher W., 2017. "How can health care organisations make and justify decisions about risk reduction? Lessons from a cross-industry review and a health care stakeholder consensus development process," Reliability Engineering and System Safety, Elsevier, vol. 161(C), pages 1-11.
    5. Hu, Shenping & Fang, Quangen & Xia, Haibo & Xi, Yongtao, 2007. "Formal safety assessment based on relative risks model in ship navigation," Reliability Engineering and System Safety, Elsevier, vol. 92(3), pages 369-377.
    6. Ersdal, Gerhard & Aven, Terje, 2008. "Risk informed decision-making and its ethical basis," Reliability Engineering and System Safety, Elsevier, vol. 93(2), pages 197-205.
    7. Kumar, Sourabh & Kumar Barua, Mukesh, 2022. "Modeling and investigating the interaction among risk factors of the sustainable petroleum supply chain," Resources Policy, Elsevier, vol. 79(C).
    8. Moura Carneiro, F.O. & Barbosa Rocha, H.H. & Costa Rocha, P.A., 2013. "Investigation of possible societal risk associated with wind power generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 30-36.
    9. Nam, Kiil & Chang, Daejun & Chang, Kwangpil & Rhee, Taejin & Lee, In-Beum, 2011. "Methodology of life cycle cost with risk expenditure for offshore process at conceptual design stage," Energy, Elsevier, vol. 36(3), pages 1554-1563.
    10. Aven, Terje, 2013. "Practical implications of the new risk perspectives," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 136-145.
    11. Abrahamsen, E.B. & Aven, T., 2008. "On the consistency of risk acceptance criteria with normative theories for decision-making," Reliability Engineering and System Safety, Elsevier, vol. 93(12), pages 1906-1910.
    12. Tang, Yang & Liu, Qingyou & Jing, Jiajia & Yang, Yan & Zou, Zhengwei, 2017. "A framework for identification of maintenance significant items in reliability centered maintenance," Energy, Elsevier, vol. 118(C), pages 1295-1303.
    13. J Barabady & T Aven, 2008. "A methodology for the implementation of production assurance programmes in production plants," Journal of Risk and Reliability, , vol. 222(3), pages 283-290, September.
    14. J. E. Vinnem & T Aven, 2006. "Case illustration of a decision framework for health, environment, and safety management," Journal of Risk and Reliability, , vol. 220(2), pages 115-121, December.
    15. Terje Aven, 2007. "On the Ethical Justification for the Use of Risk Acceptance Criteria," Risk Analysis, John Wiley & Sons, vol. 27(2), pages 303-312, April.
    16. Vinnem, Jan Erik, 2010. "Risk analysis and risk acceptance criteria in the planning processes of hazardous facilities—A case of an LNG plant in an urban area," Reliability Engineering and System Safety, Elsevier, vol. 95(6), pages 662-670.
    17. Abrahamsen, Eirik Bjorheim & Aven, Terje, 2012. "Why risk acceptance criteria need to be defined by the authorities and not the industry?," Reliability Engineering and System Safety, Elsevier, vol. 105(C), pages 47-50.
    18. Terje Aven, 2013. "On the Meaning and Use of the Risk Appetite Concept," Risk Analysis, John Wiley & Sons, vol. 33(3), pages 462-468, March.
    19. Kumar, Sourabh & Barua, Mukesh Kumar, 2022. "A modeling framework and analysis of challenges faced by the Indian petroleum supply chain," Energy, Elsevier, vol. 239(PE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:90:y:2005:i:1:p:15-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.