IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v238y2023ics0951832023003733.html
   My bibliography  Save this article

An object-oriented Bayesian network model for the quantitative risk assessment of navigational accidents in ice-covered Arctic waters

Author

Listed:
  • Fu, Shanshan
  • Zhang, Yue
  • Zhang, Mingyang
  • Han, Bing
  • Wu, Zhongdai

Abstract

Merchant ship operations in the ice-covered Arctic waters may encounter traditional navigational accident risks (i.e., grounding, collision, etc.) and risks from sea ice, such as ship besetting in ice. However, describing, modeling, and quantifying the multiple risks in ice navigation are challenges from maritime risk assessment perspective. This paper proposes an object-oriented Bayesian network (OOBN) model for the quantitative risk assessment of multiple navigational accidents in ice-covered Arctic waters. The OOBN model makes use of the accident database from Lloyd's intelligence and maritime accident investigation reports. The proposed model decomposes navigational accidents into five levels based on accident causation theory: environment, unsafe condition, unsafe act, probability of navigational accident, and consequence of the navigational accident. Consequently, collision, grounding, ship besetting in ice, and ship–ice collision accidents are selected as the cases to interpret the quantitative risk assessment for navigational risk factors identification, risk analysis, and evaluation. The results demonstrate that (1) the risk is the highest in grounding accidents, followed by besetting in ice, collision, and ship–ice collision in ice-covered Arctic waters; (2) unsafe speed and unsafe condition are the critical mutual factors of these four accident scenarios; (3) and the critical risk influencing factors for the specific navigational accidents are identified to propose corresponding risk control options. The proposed OOBN model can be used for quantitative risk assessment of navigational accidents in ice-covered Arctic waters.

Suggested Citation

  • Fu, Shanshan & Zhang, Yue & Zhang, Mingyang & Han, Bing & Wu, Zhongdai, 2023. "An object-oriented Bayesian network model for the quantitative risk assessment of navigational accidents in ice-covered Arctic waters," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
  • Handle: RePEc:eee:reensy:v:238:y:2023:i:c:s0951832023003733
    DOI: 10.1016/j.ress.2023.109459
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023003733
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109459?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yan & Zhang, Wei & Liu, Baoliang & Wang, Xiaofeng, 2024. "Availability and maintenance strategy under time-varying environments for redundant repairable systems with PH distributions," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    2. Wang, Hong & Chen, Ning & Wu, Bing & Guedes Soares, C., 2024. "Human and organizational factors analysis of collision accidents between merchant ships and fishing vessels based on HFACS-BN model," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    3. Li, Huanhuan & Çelik, Cihad & Bashir, Musa & Zou, Lu & Yang, Zaili, 2024. "Incorporation of a global perspective into data-driven analysis of maritime collision accident risk," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    4. Huo, Xiaosen & Yin, Yuan & Jiao, Liudan & Zhang, Yu, 2024. "A data-driven and knowledge graph-based analysis of the risk hazard coupling mechanism in subway construction accidents," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    5. Kong, Dewei & Lin, Zelong & Li, Wei & He, Wei, 2024. "Development of an improved Bayesian network method for maritime accident safety assessment based on multiscale scenario analysis theory," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    6. Yu, Yuerong & Liu, Kezhong & Fu, Shanshan & Chen, Jihong, 2024. "Framework for process risk analysis of maritime accidents based on resilience theory: A case study of grounding accidents in Arctic waters," Reliability Engineering and System Safety, Elsevier, vol. 249(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:238:y:2023:i:c:s0951832023003733. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.