IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v207y2021ics0951832020308449.html
   My bibliography  Save this article

Development of a multi-unit seismic conditional core damage probability model with uncertainty analysis

Author

Listed:
  • Heo, Yunyeong
  • Lee, Seung Jun

Abstract

Various studies about multi-unit probabilistic safety assessment (PSA) have been conducted following the Fukushima accident. In this paper, an intuitive and simple model is developed to supplement the disadvantages of huge models that integrate all units in the same site. Through this framework, pre-assessment can be made for multi-unit events, the results of which can assist risk-informed decision making in a relatively short time. The model deducts multi-unit seismic conditional core damage probability (MUSCCDP) with a Bayesian belief network, and by including seismic inter-unit correlation factors, the model can also represent the extent of simultaneous and identical core damage in multiple units at the same site due to an earthquake. The outcome of the model confirms the impact that seismic intensity and seismic correlation have on MUSCCDP. Moreover, it provides an importance analysis of the components in the units and represents which components are the most vulnerable in multiple units. As the uncertainty analysis of the input data for the model is conducted by changing the distribution of the variables, the results raise the necessity for further uncertainty analyses in multi-unit seismic PSA before accepting the PSA results.

Suggested Citation

  • Heo, Yunyeong & Lee, Seung Jun, 2021. "Development of a multi-unit seismic conditional core damage probability model with uncertainty analysis," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
  • Handle: RePEc:eee:reensy:v:207:y:2021:i:c:s0951832020308449
    DOI: 10.1016/j.ress.2020.107353
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832020308449
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.107353?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Taotao & Modarres, Mohammad & Droguett, Enrique López, 2018. "An improved multi-unit nuclear plant seismic probabilistic risk assessment approach," Reliability Engineering and System Safety, Elsevier, vol. 171(C), pages 34-47.
    2. Trucco, P. & Cagno, E. & Ruggeri, F. & Grande, O., 2008. "A Bayesian Belief Network modelling of organisational factors in risk analysis: A case study in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 93(6), pages 845-856.
    3. Kim, Dong-San & Park, Jin Hee & Lim, Ho-Gon, 2020. "A pragmatic approach to modeling common cause failures in multi-unit PSA for nuclear power plant sites with a large number of units," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. DeJesus Segarra, Jonathan & Bensi, Michelle & Modarres, Mohammad, 2023. "Multi-unit seismic probabilistic risk assessment: A Bayesian network perspective," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    2. Pang, Rui & Zai, Dezhi & Xu, Bin & Liu, Jun & Zhao, Chunfeng & Fan, Qunying & Chen, Yuting, 2023. "Stochastic dynamic and reliability analysis of AP1000 nuclear power plants via DPIM subjected to mainshock-aftershock sequences," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    3. Kim, Yongjin & Jang, Seunghyun & Jae, Moosung, 2022. "Evaluation of inter-unit dependency effect on site core damage frequency: Internal and seismic event," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    4. Wu, Yongxin & Wang, Juncheng & Cheng, Jialiang & Yang, Shangchuan, 2024. "Dimension-Reduction Spectral Representation of Soil Spatial Variability and Its Application in the Efficient Reliability Analysis of Seismic Response in Tunnels," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    5. Kim, Man Cheol, 2022. "Systematic approach and mathematical development for conditional core damage probabilities under station blackout of a nuclear power plant," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    6. Yoo, Heejong & Heo, Gyunyoung, 2023. "Analysis of site operating state contributions for multi-unit PSA with Korean NPP Sites," Reliability Engineering and System Safety, Elsevier, vol. 236(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Taotao & Modarres, Mohammad & Droguett, Enrique López, 2021. "Multi-unit nuclear power plant probabilistic risk assessment: A comprehensive survey," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    2. Wu, Bing & Yip, Tsz Leung & Yan, Xinping & Guedes Soares, C., 2022. "Review of techniques and challenges of human and organizational factors analysis in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    3. Yang, Zhisen & Yang, Zaili & Yin, Jingbo, 2018. "Realising advanced risk-based port state control inspection using data-driven Bayesian networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 38-56.
    4. Morais, Caroline & Estrada-Lugo, Hector Diego & Tolo, Silvia & Jacques, Tiago & Moura, Raphael & Beer, Michael & Patelli, Edoardo, 2022. "Robust data-driven human reliability analysis using credal networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    5. Sajid, Zaman & Khan, Faisal & Zhang, Yan, 2017. "Integration of interpretive structural modelling with Bayesian network for biodiesel performance analysis," Renewable Energy, Elsevier, vol. 107(C), pages 194-203.
    6. Yan-Feng Li & Jinhua Mi & Yu Liu & Yuan-Jian Yang & Hong-Zhong Huang, 2015. "Dynamic fault tree analysis based on continuous-time Bayesian networks under fuzzy numbers," Journal of Risk and Reliability, , vol. 229(6), pages 530-541, December.
    7. Carine Dominguez-Péry & Lakshmi Narasimha Raju Vuddaraju & Isabelle Corbett-Etchevers & Rana Tassabehji, 2021. "Reducing maritime accidents in ships by tackling human error: a bibliometric review and research agenda," Journal of Shipping and Trade, Springer, vol. 6(1), pages 1-32, December.
    8. Martins, Marcelo Ramos & Maturana, Marcos Coelho, 2013. "Application of Bayesian Belief networks to the human reliability analysis of an oil tanker operation focusing on collision accidents," Reliability Engineering and System Safety, Elsevier, vol. 110(C), pages 89-109.
    9. HÃ¥vold, Jon Ivar, 2010. "Safety culture and safety management aboard tankers," Reliability Engineering and System Safety, Elsevier, vol. 95(5), pages 511-519.
    10. Afshin Ghahramani & John McLean Bennett & Aram Ali & Kathryn Reardon-Smith & Glenn Dale & Stirling D. Roberton & Steven Raine, 2021. "A Risk-Based Approach to Mine-Site Rehabilitation: Use of Bayesian Belief Network Modelling to Manage Dispersive Soil and Spoil," Sustainability, MDPI, vol. 13(20), pages 1-23, October.
    11. Qiao, Wanguan, 2021. "Analysis and measurement of multifactor risk in underground coal mine accidents based on coupling theory," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    12. Sotiralis, P. & Ventikos, N.P. & Hamann, R. & Golyshev, P. & Teixeira, A.P., 2016. "Incorporation of human factors into ship collision risk models focusing on human centred design aspects," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 210-227.
    13. Elon Manurung & Effrida Effrida & Andreas James Gondowonto, 2019. "Effect of Financial Performance, Good Corporate Governance and Corporate Size on Corporate Value in Food and Beverages," International Journal of Economics and Financial Issues, Econjournals, vol. 9(6), pages 100-105.
    14. Wang, Shuaian & Yan, Ran & Qu, Xiaobo, 2019. "Development of a non-parametric classifier: Effective identification, algorithm, and applications in port state control for maritime transportation," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 129-157.
    15. Li, Huanhuan & Ren, Xujie & Yang, Zaili, 2023. "Data-driven Bayesian network for risk analysis of global maritime accidents," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    16. Wang, Likun & Yang, Zaili, 2018. "Bayesian network modelling and analysis of accident severity in waterborne transportation: A case study in China," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 277-289.
    17. Yoon, Jae Young & Kim, Dong-San, 2022. "Estimating the adverse effects of inter-unit radioactive release on operator actions at a multi-unit site," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    18. Bing Wu & Huibin Tian & Xinping Yan & C. Guedes Soares, 2020. "A probabilistic consequence estimation model for collision accidents in the downstream of Yangtze River using Bayesian Networks," Journal of Risk and Reliability, , vol. 234(2), pages 422-436, April.
    19. Kujala, P. & Hänninen, M. & Arola, T. & Ylitalo, J., 2009. "Analysis of the marine traffic safety in the Gulf of Finland," Reliability Engineering and System Safety, Elsevier, vol. 94(8), pages 1349-1357.
    20. Abrishami, Shokoufeh & Khakzad, Nima & Hosseini, Seyed Mahmoud, 2020. "A data-based comparison of BN-HRA models in assessing human error probability: An offshore evacuation case study," Reliability Engineering and System Safety, Elsevier, vol. 202(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:207:y:2021:i:c:s0951832020308449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.