IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v197y2020ics0951832019304612.html
   My bibliography  Save this article

Construction defects and wind fragility assessment for metal roof failure: A Bayesian approach

Author

Listed:
  • Qin, Hao
  • Stewart, Mark G.

Abstract

Post-damage observations reveal that construction error is one of the major contributors to roof damage for houses subjected to extreme winds. In this study, a Bayesian approach was developed to probabilistically quantify the construction defect rates in roof connections, which enables a systematic integration of expert judgement, human reliability analysis (HRA) techniques and limited construction defect data. The reductions of uplift capacities for defective roof connections were also probabilistically modelled based on experimental evidence and engineering judgement. The developed construction defect model was incorporated in a reliability-based fragility method to assess the wind damage to metal roof cladding and timber roof trusses for contemporary houses in non-cyclonic regions of Australia. It was found that, the effects of construction defects are significant for the predicted roof cladding fragility, whereas for roof truss fragility, such effects are lower.

Suggested Citation

  • Qin, Hao & Stewart, Mark G., 2020. "Construction defects and wind fragility assessment for metal roof failure: A Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
  • Handle: RePEc:eee:reensy:v:197:y:2020:i:c:s0951832019304612
    DOI: 10.1016/j.ress.2019.106777
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832019304612
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2019.106777?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kelly, Dana & Atwood, Corwin, 2011. "Finding a minimally informative Dirichlet prior distribution using least squares," Reliability Engineering and System Safety, Elsevier, vol. 96(3), pages 398-402.
    2. Podofillini, L. & Dang, V.N., 2013. "A Bayesian approach to treat expert-elicited probabilities in human reliability analysis model construction," Reliability Engineering and System Safety, Elsevier, vol. 117(C), pages 52-64.
    3. He, Xuhong & Wang, Yao & Shen, Zupei & Huang, Xiangrui, 2008. "A simplified CREAM prospective quantification process and its application," Reliability Engineering and System Safety, Elsevier, vol. 93(2), pages 298-306.
    4. Groth, Katrina M. & Smith, Curtis L. & Swiler, Laura P., 2014. "A Bayesian method for using simulator data to enhance human error probabilities assigned by existing HRA methods," Reliability Engineering and System Safety, Elsevier, vol. 128(C), pages 32-40.
    5. Nan, Cen & Sansavini, Giovanni, 2017. "A quantitative method for assessing resilience of interdependent infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 35-53.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jerez, D.J. & Jensen, H.A. & Beer, M., 2022. "An effective implementation of reliability methods for Bayesian model updating of structural dynamic models with multiple uncertain parameters," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    2. Zhou, Jian-Lan & Lei, Yi, 2020. "A slim integrated with empirical study and network analysis for human error assessment in the railway driving process," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    3. Zheng, Xiao-Wei & Li, Hong-Nan & Gardoni, Paolo, 2023. "Hybrid Bayesian-Copula-based risk assessment for tall buildings subject to wind loads considering various uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    4. Wang, Jian & Gao, Shibin & Yu, Long & Zhang, Dongkai & Xie, Chenlin & Chen, Ke & Kou, Lei, 2023. "Data-driven lightning-related failure risk prediction of overhead contact lines based on Bayesian network with spatiotemporal fragility model," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    5. Ceferino, Luis & Lin, Ning & Xi, Dazhi, 2023. "Bayesian updating of solar panel fragility curves and implications of higher panel strength for solar generation resilience," Reliability Engineering and System Safety, Elsevier, vol. 229(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ekanem, Nsimah & Mosleh, Ali & Shen, Song-Hua & Ramos, Marilia, 2024. "Phoenix–A model-based human reliability analysis methodology: Data sources and quantitative analysis procedure," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    2. Wu, Bing & Yip, Tsz Leung & Yan, Xinping & Guedes Soares, C., 2022. "Review of techniques and challenges of human and organizational factors analysis in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    3. Greco, Salvatore F. & Podofillini, Luca & Dang, Vinh N., 2021. "A Bayesian model to treat within-category and crew-to-crew variability in simulator data for Human Reliability Analysis," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    4. Kim, Yochan & Park, Jinkyun & Jung, Wondea & Jang, Inseok & Hyun Seong, Poong, 2015. "A statistical approach to estimating effects of performance shaping factors on human error probabilities of soft controls," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 378-387.
    5. Morais, Caroline & Estrada-Lugo, Hector Diego & Tolo, Silvia & Jacques, Tiago & Moura, Raphael & Beer, Michael & Patelli, Edoardo, 2022. "Robust data-driven human reliability analysis using credal networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    6. Liao, Huafei & Groth, Katrina & Stevens-Adams, Susan, 2015. "Challenges in leveraging existing human performance data for quantifying the IDHEAS HRA method," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 159-169.
    7. Patriarca, Riccardo & Ramos, Marilia & Paltrinieri, Nicola & Massaiu, Salvatore & Costantino, Francesco & Di Gravio, Giulio & Boring, Ronald Laurids, 2020. "Human reliability analysis: Exploring the intellectual structure of a research field," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    8. Podofillini, Luca & Reer, Bernhard & Dang, Vinh N., 2023. "A traceable process to develop Bayesian networks from scarce data and expert judgment: A human reliability analysis application," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    9. Liu, Peng & Qiu, Yongping & Hu, Juntao & Tong, Jiejuan & Zhao, Jun & Li, Zhizhong, 2020. "Expert judgments for performance shaping Factors’ multiplier design in human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    10. Pei, Shunshun & Zhai, Changhai & Hu, Jie, 2024. "Surrogate model-assisted seismic resilience assessment of the interdependent transportation and healthcare system considering a two-stage recovery strategy," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    11. Licia Felicioni & Antonín Lupíšek & Petr Hájek, 2020. "Major European Stressors and Potential of Available Tools for Assessment of Urban and Buildings Resilience," Sustainability, MDPI, vol. 12(18), pages 1-27, September.
    12. Musharraf, Mashrura & Bradbury-Squires, David & Khan, Faisal & Veitch, Brian & MacKinnon, Scott & Imtiaz, Syed, 2014. "A virtual experimental technique for data collection for a Bayesian network approach to human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 1-8.
    13. Liu, Huan & Tatano, Hirokazu & Pflug, Georg & Hochrainer-Stigler, Stefan, 2021. "Post-disaster recovery in industrial sectors: A Markov process analysis of multiple lifeline disruptions," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    14. Coolen, Frank P.A. & Coolen-Maturi, Tahani, 2015. "Predictive inference for system reliability after common-cause component failures," Reliability Engineering and System Safety, Elsevier, vol. 135(C), pages 27-33.
    15. Brunner, L.G. & Peer, R.A.M. & Zorn, C. & Paulik, R. & Logan, T.M., 2024. "Understanding cascading risks through real-world interdependent urban infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    16. Haritha, P.C. & Anjaneyulu, M.V.L.R., 2024. "Comparison of topological functionality-based resilience metrics using link criticality," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    17. Mühlhofer, Evelyn & Koks, Elco E. & Kropf, Chahan M. & Sansavini, Giovanni & Bresch, David N., 2023. "A generalized natural hazard risk modelling framework for infrastructure failure cascades," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    18. Zhou, Xinxin & Huang, Yun & Bai, Guanghan & Xu, Bei & Tao, Junyong, 2024. "The resilience evaluation of unmanned autonomous swarm with informed agents under partial failure," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    19. Utkin, Lev V. & Coolen, Frank P.A. & Gurov, Sergey V., 2015. "Imprecise inference for warranty contract analysis," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 31-39.
    20. Mi, Jinhua & Beer, Michael & Li, Yan-Feng & Broggi, Matteo & Cheng, Yuhua, 2020. "Reliability and importance analysis of uncertain system with common cause failures based on survival signature," Reliability Engineering and System Safety, Elsevier, vol. 201(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:197:y:2020:i:c:s0951832019304612. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.