IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v178y2018icp156-163.html
   My bibliography  Save this article

Evaluation of preconditions affecting symptomatic human error in general aviation and air carrier aviation accidents

Author

Listed:
  • Erjavac, Anthony J.
  • Iammartino, Ronald
  • Fossaceca, John M.

Abstract

Human error remains the leading cause of accidents in the aviation industry, as technological reliability and system safety have undergone significant improvements. Improved methods are required to model the events resulting in human error incidents. In this study, aviation accident data are evaluated to model the association between the latent and symptomatic causal factors resulting in aviation mishaps. We comparatively analyze National Transportation Safety Board accident data for general aviation and air carrier pilots in order to evaluate potential causal factors. The demonstrated methodology leverages previous work in causal relationships by using multiple-variable logistic regression to model the relationships among latent causal factors, symptomatic causal factors, and accident severity. The Human Factors Analysis and Classification System is applied to define a framework intended to identify focal areas for the safety community to mitigate similar future system failures. The results demonstrate an effective methodology for evaluating the quantitative relationships between symptomatic and latent causal factors, which are not readily apparent based solely on occurrence rates. Furthermore, the results also clarify the differences in causal factors between the selected general aviation and air carrier pilot operations. The usefulness of the framework, transferability to other domains, and possibilities for future research are discussed.

Suggested Citation

  • Erjavac, Anthony J. & Iammartino, Ronald & Fossaceca, John M., 2018. "Evaluation of preconditions affecting symptomatic human error in general aviation and air carrier aviation accidents," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 156-163.
  • Handle: RePEc:eee:reensy:v:178:y:2018:i:c:p:156-163
    DOI: 10.1016/j.ress.2018.05.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832018300607
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2018.05.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rajagopal, 2014. "The Human Factors," Palgrave Macmillan Books, in: Architecting Enterprise, chapter 9, pages 225-249, Palgrave Macmillan.
    2. Kim, Yochan & Park, Jinkyun & Jung, Wondea, 2017. "A quantitative measure of fitness for duty and work processes for human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 595-601.
    3. Nicholas Hardman & John Colombi, 2012. "An empirical methodology for human integration in the SE technical processes," Systems Engineering, John Wiley & Sons, vol. 15(2), pages 172-190, June.
    4. Theophilus, Stephen C. & Esenowo, Victor N. & Arewa, Andrew O. & Ifelebuegu, Augustine O. & Nnadi, Ernest O. & Mbanaso, Fredrick U., 2017. "Human factors analysis and classification system for the oil and gas industry (HFACS-OGI)," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 168-176.
    5. Azad M. Madni, 2010. "Integrating humans with software and systems: Technical challenges and a research agenda," Systems Engineering, John Wiley & Sons, vol. 13(3), pages 232-245, September.
    6. Kim, Yochan & Park, Jinkyun & Jung, Wondea & Jang, Inseok & Hyun Seong, Poong, 2015. "A statistical approach to estimating effects of performance shaping factors on human error probabilities of soft controls," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 378-387.
    7. Noroozi, Alireza & Khakzad, Nima & Khan, Faisal & MacKinnon, Scott & Abbassi, Rouzbeh, 2013. "The role of human error in risk analysis: Application to pre- and post-maintenance procedures of process facilities," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 251-258.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David LANGR & Jindřich PLOCH & Petr RUDOLF & Stanislav SZABO & Iveta VAJDOVÁ, 2019. "Selection Process As A Key Human Aspect In Air Traffic Control," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 14(3), pages 75-84, September.
    2. Song, Chengcheng & Shao, Quan & Zhu, Pei & Dong, Min & Yu, Wenfei, 2023. "An emergency aircraft evacuation simulation considering passenger overtaking and luggage retrieval," Reliability Engineering and System Safety, Elsevier, vol. 229(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zarei, Esmaeil & Khan, Faisal & Abbassi, Rouzbeh, 2021. "Importance of human reliability in process operation: A critical analysis," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    2. Kandemir, Cagatay & Celik, Metin, 2021. "Determining the error producing conditions in marine engineering maintenance and operations through HFACS-MMO," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    3. Liu, Peng & Qiu, Yongping & Hu, Juntao & Tong, Jiejuan & Zhao, Jun & Li, Zhizhong, 2020. "Expert judgments for performance shaping Factors’ multiplier design in human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    4. Bhardwaj, U. & Teixeira, A.P. & Guedes Soares, C., 2022. "Casualty analysis methodology and taxonomy for FPSO accident analysis," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    5. Kim, Yochan & Park, Jinkyun & Jung, Wondea, 2017. "A classification scheme of erroneous behaviors for human error probability estimations based on simulator data," Reliability Engineering and System Safety, Elsevier, vol. 163(C), pages 1-13.
    6. Özkan Uğurlu & Serdar Yıldız & Sean Loughney & Jin Wang & Shota Kuntchulia & Irakli Sharabidze, 2020. "Analyzing Collision, Grounding, and Sinking Accidents Occurring in the Black Sea Utilizing HFACS and Bayesian Networks," Risk Analysis, John Wiley & Sons, vol. 40(12), pages 2610-2638, December.
    7. Kaptan, Mehmet & Uğurlu, Özkan & Wang, Jin, 2021. "The effect of nonconformities encountered in the use of technology on the occurrence of collision, contact and grounding accidents," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    8. Steve J. Bickley & Benno Torgler, 2020. "A Systematic Approach to Safety Incidents in Public Health – Applying the Human Factors Analysis and Classification System to COVID-19," CREMA Working Paper Series 2020-13, Center for Research in Economics, Management and the Arts (CREMA).
    9. Fakhradin Ghasemi & Mohammad Babamiri & Zahra Pashootan, 2022. "A comprehensive method for the quantification of medication error probability based on fuzzy SLIM," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-17, February.
    10. Patriarca, Riccardo & Ramos, Marilia & Paltrinieri, Nicola & Massaiu, Salvatore & Costantino, Francesco & Di Gravio, Giulio & Boring, Ronald Laurids, 2020. "Human reliability analysis: Exploring the intellectual structure of a research field," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    11. Filho, Anastácio Pinto Gonçalves & Souza, Carlos Augusto & Siqueira, Eduardo Luiz Bonecker & Souza, Mozart Anderson & Vasconcelos, Tales Pinheiro, 2019. "An analysis of helicopter accident reports in Brazil from a human factors perspective," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 39-46.
    12. Porthin, Markus & Liinasuo, Marja & Kling, Terhi, 2020. "Effects of digitalization of nuclear power plant control rooms on human reliability analysis – A review," Reliability Engineering and System Safety, Elsevier, vol. 194(C).
    13. Yildiz, Serdar & Uğurlu, Özkan & Wang, Jin & Loughney, Sean, 2021. "Application of the HFACS-PV approach for identification of human and organizational factors (HOFs) influencing marine accidents," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    14. Rahman, Shaikh Moksadur, 2020. "Relationship between Job Satisfaction and Turnover Intention: Evidence from Bangladesh," Asian Business Review, Asian Business Consortium, vol. 10(2), pages 99-108.
    15. Wang Kai, 2019. "Towards a Taxonomy of Idea Generation Techniques," Foundations of Management, Sciendo, vol. 11(1), pages 65-80, January.
    16. Bridgelall, Raj & Stubbing, Edward, 2021. "Forecasting the effects of autonomous vehicles on land use," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    17. Bevilacqua, Maurizio & Ciarapica, Filippo Emanuele, 2018. "Human factor risk management in the process industry: A case study," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 149-159.
    18. Naveena Prakasam & Louisa Huxtable-Thomas, 2021. "Reddit: Affordances as an Enabler for Shifting Loyalties," Information Systems Frontiers, Springer, vol. 23(3), pages 723-751, June.
    19. Asadzadeh, S.M. & Azadeh, A., 2014. "An integrated systemic model for optimization of condition-based maintenance with human error," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 117-131.
    20. Colin Jerolmack & Alexandra K. Murphy, 2019. "The Ethical Dilemmas and Social Scientific Trade-offs of Masking in Ethnography," Sociological Methods & Research, , vol. 48(4), pages 801-827, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:178:y:2018:i:c:p:156-163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.