IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v167y2017icp84-94.html
   My bibliography  Save this article

Markov process based time limited dispatch analysis with constraints of both dispatch reliability and average safety levels

Author

Listed:
  • Lu, Zhong
  • Liang, Xihui
  • Zuo, Ming J.
  • Zhou, Jia

Abstract

Time Limited Dispatch (TLD) allows a degraded redundant system to operate for a limited length of time before it is sent for repair. Existing TLD analysis methods do not consider dispatch reliability requirement as a constraint, thus unacceptable flight delays or cancellations may be experienced when aircraft are dispatched following the intervals determined by existing methods. In this paper, an improved TLD analysis method with constraints of both dispatch reliability and average safety levels is proposed based on Markov process analysis. Dispatch strategies for multiple fault TLD models are proposed, the average safety level is redefined, and both the dispatch reliability and the average safety level are expressed by dispatch intervals based on the Markov processes. Finally, examples illustrate the advantages of the proposed method. The results show that the requirements for both dispatch reliability and average safety level are ensured when aircraft are dispatched following the intervals determined by the proposed method.

Suggested Citation

  • Lu, Zhong & Liang, Xihui & Zuo, Ming J. & Zhou, Jia, 2017. "Markov process based time limited dispatch analysis with constraints of both dispatch reliability and average safety levels," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 84-94.
  • Handle: RePEc:eee:reensy:v:167:y:2017:i:c:p:84-94
    DOI: 10.1016/j.ress.2017.05.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183201730580X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2017.05.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D Prescott & J. D. Andrews, 2006. "A Comparison of Modelling Approaches for the Time-Limited Dispatch (TLD) of Aircraft," Journal of Risk and Reliability, , vol. 220(1), pages 9-20, June.
    2. George-Williams, Hindolo & Patelli, Edoardo, 2016. "A hybrid load flow and event driven simulation approach to multi-state system reliability evaluation," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 351-367.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Di & Wang, Shaoping & Zhang, Chao & Tomovic, Mileta, 2018. "Bayesian model averaging based reliability analysis method for monotonic degradation dataset based on inverse Gaussian process and Gamma process," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 25-38.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hindolo George-Williams & Geng Feng & Frank PA Coolen & Michael Beer & Edoardo Patelli, 2019. "Extending the survival signature paradigm to complex systems with non-repairable dependent failures," Journal of Risk and Reliability, , vol. 233(4), pages 505-519, August.
    2. Peng, Rui & Xiao, Hui & Liu, Hanlin, 2017. "Reliability of multi-state systems with a performance sharing group of limited size," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 164-170.
    3. George-Williams, Hindolo & Patelli, Edoardo, 2017. "Efficient availability assessment of reconfigurable multi-state systems with interdependencies," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 431-444.
    4. Patelli, Edoardo & Feng, Geng & Coolen, Frank P.A. & Coolen-Maturi, Tahani, 2017. "Simulation methods for system reliability using the survival signature," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 327-337.
    5. Yeh, Wei-Chang & Chu, Ta-Chung, 2018. "A novel multi-distribution multi-state flow network and its reliability optimization problem," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 209-217.
    6. Chang, Ping-Chen, 2022. "MC-based simulation approach for two-terminal multi-state network reliability evaluation without knowing d-MCs," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    7. George-Williams, H. & Wade, N. & Carpenter, R.N., 2022. "A probabilistic framework for the techno-economic assessment of smart energy hubs for electric vehicle charging," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    8. Wu, Bei & Cui, Lirong & Fang, Chen, 2019. "Reliability analysis of semi-Markov systems with restriction on transition times," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    9. Huang, Xianzhen & Coolen, Frank P.A. & Coolen-Maturi, Tahani, 2019. "A heuristic survival signature based approach for reliability-redundancy allocation," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 511-517.
    10. Gregory Levitin & Heping Jia & Yi Ding & Yonghua Song, 2017. "1-out-of-N multi-state standby systems with state-dependent random replacement times," Journal of Risk and Reliability, , vol. 231(6), pages 750-760, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:167:y:2017:i:c:p:84-94. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.