IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v147y2016icp142-155.html
   My bibliography  Save this article

Multi-objective optimization of IT service availability and costs

Author

Listed:
  • Bosse, Sascha
  • Splieth, Matthias
  • Turowski, Klaus

Abstract

The continuous provision of highly available IT services is a crucial task for IT service providers in order to fulfill service level agreements with customers. Although the introduction of redundant components increases availability, the associated cost may be very high. Therefore, decision makers in the IT service design stage face a trade-off between cost and availability in order to define suitable service level objectives. Although this task can be seen as a redundancy allocation problem, the existing definitions in this area are not transferable to IT service design due to the assumption of independent component failures, which has been identified as unrealistic in IT systems.

Suggested Citation

  • Bosse, Sascha & Splieth, Matthias & Turowski, Klaus, 2016. "Multi-objective optimization of IT service availability and costs," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 142-155.
  • Handle: RePEc:eee:reensy:v:147:y:2016:i:c:p:142-155
    DOI: 10.1016/j.ress.2015.11.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832015003312
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2015.11.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chambari, Amirhossain & Najafi, Amir Abbas & Rahmati, Seyed Habib A. & Karimi, Aida, 2013. "An efficient simulated annealing algorithm for the redundancy allocation problem with a choice of redundancy strategies," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 158-164.
    2. Safari, Jalal, 2012. "Multi-objective reliability optimization of series-parallel systems with a choice of redundancy strategies," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 10-20.
    3. Dolatshahi-Zand, Ali & Khalili-Damghani, Kaveh, 2015. "Design of SCADA water resource management control center by a bi-objective redundancy allocation problem and particle swarm optimization," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 11-21.
    4. John D. Kettelle, 1962. "Least-Cost Allocations of Reliability Investment," Operations Research, INFORMS, vol. 10(2), pages 249-265, April.
    5. Julian Araujo & Gustavo Callou & Paulo Romero Martins Maciel & Dietmar Tutsch & Carlos Araujo & Joao Ferreira & Rafael Souza, 2012. "A Petri Net-Based Approach to the Quantification of Data Center Dependability," Chapters, in: Pawel Pawlewski (ed.), Petri Nets - Manufacturing and Computer Science, IntechOpen.
    6. Kulturel-Konak, Sadan & Smith, Alice E. & Norman, Bryan A., 2006. "Multi-objective tabu search using a multinomial probability mass function," European Journal of Operational Research, Elsevier, vol. 169(3), pages 918-931, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ulrik Franke, 2020. "IT service outage cost: case study and implications for cyber insurance," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 45(4), pages 760-784, October.
    2. Koutras, V.P. & Malefaki, S. & Platis, A.N., 2017. "Optimization of the dependability and performance measures of a generic model for multi-state deteriorating systems under maintenance," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 73-86.
    3. Soheil Azizi & Milad Mohammadi, 2023. "Strategy selection for multi-objective redundancy allocation problem in a k-out-of-n system considering the mean time to failure," OPSEARCH, Springer;Operational Research Society of India, vol. 60(2), pages 1021-1044, June.
    4. Pietrantuono, Roberto & Popov, Peter & Russo, Stefano, 2020. "Reliability assessment of service-based software under operational profile uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    5. Ulrik Franke, 0. "IT service outage cost: case study and implications for cyber insurance," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 0, pages 1-25.
    6. Carpitella, Silvia & Certa, Antonella & Izquierdo, Joaquín & La Fata, Concetta Manuela, 2018. "A combined multi-criteria approach to support FMECA analyses: A real-world case," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 394-402.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guilani, Pedram Pourkarim & Azimi, Parham & Niaki, S.T.A. & Niaki, Seyed Armin Akhavan, 2016. "Redundancy allocation problem of a system with increasing failure rates of components based on Weibull distribution: A simulation-based optimization approach," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 187-196.
    2. Kong, Xiangyong & Gao, Liqun & Ouyang, Haibin & Li, Steven, 2015. "Solving the redundancy allocation problem with multiple strategy choices using a new simplified particle swarm optimization," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 147-158.
    3. Feizabadi, Mohammad & Jahromi, Abdolhamid Eshraghniaye, 2017. "A new model for reliability optimization of series-parallel systems with non-homogeneous components," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 101-112.
    4. Hadipour, Hassan & Amiri, Maghsoud & Sharifi, Mani, 2019. "Redundancy allocation in series-parallel systems under warm standby and active components in repairable subsystems," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    5. Gholinezhad, Hadi & Zeinal Hamadani, Ali, 2017. "A new model for the redundancy allocation problem with component mixing and mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 66-73.
    6. Kayedpour, Farjam & Amiri, Maghsoud & Rafizadeh, Mahmoud & Shahryari Nia, Arash, 2017. "Multi-objective redundancy allocation problem for a system with repairable components considering instantaneous availability and strategy selection," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 11-20.
    7. Attar, Ahmad & Raissi, Sadigh & Khalili-Damghani, Kaveh, 2017. "A simulation-based optimization approach for free distributed repairable multi-state availability-redundancy allocation problems," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 177-191.
    8. Zhang, Enze & Chen, Qingwei, 2016. "Multi-objective reliability redundancy allocation in an interval environment using particle swarm optimization," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 83-92.
    9. Meisam Sadeghi & Emad Roghanian & Hamid Shahriari & Hassan Sadeghi, 2021. "Reliability optimization for non-repairable series-parallel systems with a choice of redundancy strategies and heterogeneous components: Erlang time-to-failure distribution," Journal of Risk and Reliability, , vol. 235(3), pages 509-528, June.
    10. Ardakan, Mostafa Abouei & Amini, Hanieh & Juybari, Mohammad N., 2022. "Prescheduled switching time: A new strategy for systems with standby components," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    11. Meisam Sadeghi & Emad Roghanian, 2017. "Reliability optimization for non-repairable series-parallel systems with a choice of redundancy strategies: Erlang time-to-failure distribution," Journal of Risk and Reliability, , vol. 231(5), pages 587-604, October.
    12. Mohammad N. Juybari & Pardis Pourkarim Guilani & Mostafa Abouei Ardakan, 2022. "Bi-objective sequence optimization in reliability problems with a matrix-analytic approach," Annals of Operations Research, Springer, vol. 312(1), pages 275-304, May.
    13. Vahid Baradaran & Amir Hossein Hosseinian, 2020. "A bi-objective model for redundancy allocation problem in designing server farms: mathematical formulation and solution approaches," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(5), pages 935-952, October.
    14. Chang, Kuo-Hao & Kuo, Po-Yi, 2018. "An efficient simulation optimization method for the generalized redundancy allocation problem," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1094-1101.
    15. Xian Zhao & Jing Zhang & Xiaoyue Wang, 2019. "Joint optimization of components redundancy, spares inventory and repairmen allocation for a standby series system," Journal of Risk and Reliability, , vol. 233(4), pages 623-638, August.
    16. Abouei Ardakan, Mostafa & Zeinal Hamadani, Ali, 2014. "Reliability optimization of series–parallel systems with mixed redundancy strategy in subsystems," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 132-139.
    17. Anil Kr. Aggarwal & Vikram Singh & Sanjeev Kumar, 2017. "Availability analysis and performance optimization of a butter oil production system: a case study," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(1), pages 538-554, January.
    18. Selçuklu, Saltuk Buğra & Coit, David W. & Felder, Frank A., 2020. "Pareto uncertainty index for evaluating and comparing solutions for stochastic multiple objective problems," European Journal of Operational Research, Elsevier, vol. 284(2), pages 644-659.
    19. Zhao, Jiangbin & Si, Shubin & Cai, Zhiqiang, 2019. "A multi-objective reliability optimization for reconfigurable systems considering components degradation," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 104-115.
    20. Behrad Barghi & Shahram Shadrokh Sikari, 2022. "Meta-heuristic Solution with Considering Setup Time for Multi-Skilled Project Scheduling Problem," SN Operations Research Forum, Springer, vol. 3(1), pages 1-23, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:147:y:2016:i:c:p:142-155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.