IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v112y2013icp59-66.html
   My bibliography  Save this article

Selection of security system design via games of imperfect information and multi-objective genetic algorithm

Author

Listed:
  • Lins, Isis Didier
  • Rêgo, Leandro Chaves
  • Moura, Márcio das Chagas
  • Droguett, Enrique López

Abstract

This work analyzes the strategic interaction between a defender and an intelligent attacker by means of a game and reliability framework involving a multi-objective approach and imperfect information so as to support decision-makers in choosing efficiently designed security systems. A multi-objective genetic algorithm is used to determine the optimal security system's configurations representing the tradeoff between the probability of a successful defense and the acquisition and operational costs. Games with imperfect information are considered, in which the attacker has limited knowledge about the actual security system. The types of security alternatives are readily observable, but the number of redundancies actually implemented in each security subsystem is not known. The proposed methodology is applied to an illustrative example considering power transmission lines in the Northeast of Brazil, which are often targets for attackers who aims at selling the aluminum conductors. The empirical results show that the framework succeeds in handling this sort of strategic interaction.

Suggested Citation

  • Lins, Isis Didier & Rêgo, Leandro Chaves & Moura, Márcio das Chagas & Droguett, Enrique López, 2013. "Selection of security system design via games of imperfect information and multi-objective genetic algorithm," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 59-66.
  • Handle: RePEc:eee:reensy:v:112:y:2013:i:c:p:59-66
    DOI: 10.1016/j.ress.2012.11.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832012002517
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2012.11.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Levitin, Gregory & Hausken, Kjell, 2008. "Protection vs. redundancy in homogeneous parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 93(10), pages 1444-1451.
    2. Levitin, Gregory & Hausken, Kjell, 2009. "False targets efficiency in defense strategy," European Journal of Operational Research, Elsevier, vol. 194(1), pages 155-162, April.
    3. Azaiez, M.N. & Bier, Vicki M., 2007. "Optimal resource allocation for security in reliability systems," European Journal of Operational Research, Elsevier, vol. 181(2), pages 773-786, September.
    4. Mas-Colell, Andreu & Whinston, Michael D. & Green, Jerry R., 1995. "Microeconomic Theory," OUP Catalogue, Oxford University Press, number 9780195102680.
    5. Kjell Hausken, 2005. "Production and Conflict Models Versus Rent-Seeking Models," Public Choice, Springer, vol. 123(1), pages 59-93, April.
    6. Gregory Levitin, 2005. "The Universal Generating Function in Reliability Analysis and Optimization," Springer Series in Reliability Engineering, Springer, number 978-1-84628-245-4, March.
    7. Levitin, Gregory & Ben-Haim, Hanoch, 2008. "Importance of protections against intentional attacks," Reliability Engineering and System Safety, Elsevier, vol. 93(4), pages 639-646.
    8. Levitin, Gregory & Hausken, Kjell, 2010. "Separation in homogeneous systems with independent identical elements," European Journal of Operational Research, Elsevier, vol. 203(3), pages 625-634, June.
    9. Hausken, Kjell & Levitin, Gregory, 2009. "Minmax defense strategy for complex multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 577-587.
    10. Taboada, Heidi A. & Baheranwala, Fatema & Coit, David W. & Wattanapongsakorn, Naruemon, 2007. "Practical solutions for multi-objective optimization: An application to system reliability design problems," Reliability Engineering and System Safety, Elsevier, vol. 92(3), pages 314-322.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Cen & Zhuang, Jun, 2017. "N-stage security screening strategies in the face of strategic applicants," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 292-301.
    2. Hunt, Kyle & Zhuang, Jun, 2024. "A review of attacker-defender games: Current state and paths forward," European Journal of Operational Research, Elsevier, vol. 313(2), pages 401-417.
    3. Mo, Huadong & Xie, Min & Levitin, Gregory, 2015. "Optimal resource distribution between protection and redundancy considering the time and uncertainties of attacks," European Journal of Operational Research, Elsevier, vol. 243(1), pages 200-210.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Levitin, Gregory & Hausken, Kjell, 2009. "Intelligence and impact contests in systems with redundancy, false targets, and partial protection," Reliability Engineering and System Safety, Elsevier, vol. 94(12), pages 1927-1941.
    2. Ye, Zhi-Sheng & Peng, Rui & Wang, Wenbin, 2017. "Defense and attack of performance-sharing common bus systemsAuthor-Name: Zhai, Qingqing," European Journal of Operational Research, Elsevier, vol. 256(3), pages 962-975.
    3. Kjell Hausken & Jun Zhuang, 2011. "Governments' and Terrorists' Defense and Attack in a T -Period Game," Decision Analysis, INFORMS, vol. 8(1), pages 46-70, March.
    4. Bricha, Naji & Nourelfath, Mustapha, 2014. "Extra-capacity versus protection for supply networks under attack," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 185-196.
    5. Qingqing Zhai & Rui Peng & Jun Zhuang, 2020. "Defender–Attacker Games with Asymmetric Player Utilities," Risk Analysis, John Wiley & Sons, vol. 40(2), pages 408-420, February.
    6. Levitin, Gregory & Hausken, Kjell, 2010. "Separation in homogeneous systems with independent identical elements," European Journal of Operational Research, Elsevier, vol. 203(3), pages 625-634, June.
    7. Dan Kovenock & Brian Roberson, 2012. "Strategic Defense And Attack For Series And Parallel Reliability Systems: Comment," Defence and Peace Economics, Taylor & Francis Journals, vol. 23(5), pages 507-515, October.
    8. G Levitin & K Hausken, 2010. "Defence and attack of systems with variable attacker system structure detection probability," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 124-133, January.
    9. R Peng & G Levitin & M Xie & S H Ng, 2011. "Optimal defence of single object with imperfect false targets," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 134-141, January.
    10. Levitin, Gregory & Hausken, Kjell, 2010. "Influence of attacker's target recognition ability on defense strategy in homogeneous parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 95(5), pages 565-572.
    11. Bier, Vicki M. & Kosanoglu, Fuat, 2015. "Target-oriented utility theory for modeling the deterrent effects of counterterrorism," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 35-46.
    12. Levitin, Gregory & Hausken, Kjell, 2009. "False targets vs. redundancy in homogeneous parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 588-595.
    13. Chen, Shun & Zhao, Xudong & Chen, Zhilong & Hou, Benwei & Wu, Yipeng, 2022. "A game-theoretic method to optimize allocation of defensive resource to protect urban water treatment plants against physical attacks," International Journal of Critical Infrastructure Protection, Elsevier, vol. 36(C).
    14. Xiao, Hui & Shi, Daimin & Ding, Yi & Peng, Rui, 2016. "Optimal loading and protection of multi-state systems considering performance sharing mechanism," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 88-95.
    15. Ben Yaghlane, Asma & Azaiez, M. Naceur, 2017. "Systems under attack-survivability rather than reliability: Concept, results, and applications," European Journal of Operational Research, Elsevier, vol. 258(3), pages 1156-1164.
    16. Ramirez-Marquez, Jose E. & Rocco S, Claudio M. & Levitin, Gregory, 2009. "Optimal protection of general source–sink networks via evolutionary techniques," Reliability Engineering and System Safety, Elsevier, vol. 94(10), pages 1676-1684.
    17. Gregory Levitin & Kjell Hausken, 2013. "Parallel systems under two sequential attacks with contest intensity variation," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(1), pages 207-224, January.
    18. Levitin, Gregory & Hausken, Kjell, 2009. "Parallel systems under two sequential attacks," Reliability Engineering and System Safety, Elsevier, vol. 94(3), pages 763-772.
    19. Levitin, Gregory & Hausken, Kjell, 2009. "Meeting a demand vs. enhancing protections in homogeneous parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1711-1717.
    20. Peng, R. & Levitin, G. & Xie, M. & Ng, S.H., 2010. "Defending simple series and parallel systems with imperfect false targets," Reliability Engineering and System Safety, Elsevier, vol. 95(6), pages 679-688.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:112:y:2013:i:c:p:59-66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.