IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v100y2012icp33-47.html
   My bibliography  Save this article

Model-based identification and use of task complexity factors of human integrated systems

Author

Listed:
  • Ham, Dong-Han
  • Park, Jinkyun
  • Jung, Wondea

Abstract

Task complexity is one of the conceptual constructs that are critical to explain and predict human performance in human integrated systems. A basic approach to evaluating the complexity of tasks is to identify task complexity factors and measure them. Although a great deal of task complexity factors have been studied, there is still a lack of conceptual frameworks for identifying and organizing them analytically, which can be generally used irrespective of the types of domains and tasks. This study proposes a model-based approach to identifying and using task complexity factors, which has two facets—the design aspects of a task and complexity dimensions. Three levels of design abstraction, which are functional, behavioral, and structural aspects of a task, characterize the design aspect of a task. The behavioral aspect is further classified into five cognitive processing activity types. The complexity dimensions explain a task complexity from different perspectives, which are size, variety, and order/organization. Twenty-one task complexity factors are identified by the combination of the attributes of each facet. Identification and evaluation of task complexity factors based on this model is believed to give insights for improving the design quality of tasks. This model for complexity factors can also be used as a referential framework for allocating tasks and designing information aids. The proposed approach is applied to procedure-based tasks of nuclear power plants (NPPs) as a case study to demonstrate its use. Last, we compare the proposed approach with other studies and then suggest some future research directions.

Suggested Citation

  • Ham, Dong-Han & Park, Jinkyun & Jung, Wondea, 2012. "Model-based identification and use of task complexity factors of human integrated systems," Reliability Engineering and System Safety, Elsevier, vol. 100(C), pages 33-47.
  • Handle: RePEc:eee:reensy:v:100:y:2012:i:c:p:33-47
    DOI: 10.1016/j.ress.2011.12.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832011002821
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2011.12.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Song & Li, Zhizhong & Song, Fei & Luo, Wei & Zhao, Qianyi & Salvendy, Gavriel, 2009. "Influence of step complexity and presentation style on step performance of computerized emergency operating procedures," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 670-674.
    2. Jinkyun Park, 2009. "The Complexity of Proceduralized Tasks," Springer Series in Reliability Engineering, Springer, number 978-1-84882-791-2, June.
    3. Park, Jinkyun & Jung, Wondea, 2007. "A study on the development of a task complexity measure for emergency operating procedures of nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 92(8), pages 1102-1116.
    4. Solodilova-Whiteley, Iya & Johnson, Peter, 2006. "Uncovering the information needs in complex aerospace systems," Reliability Engineering and System Safety, Elsevier, vol. 91(12), pages 1566-1575.
    5. Wears, Robert L. & Cook, Richard I. & Perry, Shawna J., 2006. "Automation, interaction, complexity, and failure: A case study," Reliability Engineering and System Safety, Elsevier, vol. 91(12), pages 1494-1501.
    6. Xu, Song & Song, Fei & Li, Zhizhong & Zhao, Qianyi & Luo, Wei & He, Xuhong & Salvendy, Gavriel, 2008. "An ergonomics study of computerized emergency operating procedures: Presentation style, task complexity, and training level," Reliability Engineering and System Safety, Elsevier, vol. 93(10), pages 1500-1511.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Francesca Milazzo & Giuseppa Ancione & Giancarlo Consolo, 2021. "Human Factors Modelling Approach: Application to a Safety Device Supporting Crane Operations in Major Hazard Industries," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    2. Sobhani, A. & Wahab, M.I.M. & Neumann, W.P., 2017. "Incorporating human factors-related performance variation in optimizing a serial system," European Journal of Operational Research, Elsevier, vol. 257(1), pages 69-83.
    3. Ge, Xiangyu & Zhou, Qianxiang & Liu, Zhongqi, 2020. "Assessment of space station on-orbit maintenance task complexity," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    4. Ham, Dong-Han & Jung, Won-Jun & Park, Jinkyun, 2021. "Identifying key factors affecting the performance of team decision-making based on the analysis of investigation reports issued from diverse industries," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    5. Liu, Peng & Li, Zhizhong, 2014. "Comparison of task complexity measures for emergency operating procedures: Convergent validity and predictive validity," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 289-293.
    6. Liu, Jianqiao & Zou, Yanhua & Wang, Wei & Zhang, Li & Liu, Xueyang & Ding, Qianqiao & Qin, Zhuomin & ÄŒepin, Marko, 2021. "Analysis of dependencies among performance shaping factors in human reliability analysis based on a system dynamics approach," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    7. Qiao, Yidan & Zhang, Xian & Wang, Hanyu & Chen, Dengkai, 2024. "Dynamic assessment method for human factor risk of manned deep submergence operation system based on SPAR-H and SD," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    8. Hendrik Stouten & Andreas Größler, 2017. "Task Complexity in Individual Stock Control Tasks for Laboratory Experiments on Human Understanding of Dynamic Systems," Systems Research and Behavioral Science, Wiley Blackwell, vol. 34(1), pages 62-77, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Peng & Li, Zhizhong, 2014. "Comparison of task complexity measures for emergency operating procedures: Convergent validity and predictive validity," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 289-293.
    2. Jang, Inseok & Kim, Yochan & Park, Jinkyun, 2021. "Investigating the Effect of Task Complexity on the Occurrence of Human Errors observed in a Nuclear Power Plant Full-Scope Simulator," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    3. Park, Jinkyun, 2014. "Investigating the TACOM measure as a general tool for quantifying the complexity of procedure guided tasks," Reliability Engineering and System Safety, Elsevier, vol. 129(C), pages 66-75.
    4. Zarei, Esmaeil & Khan, Faisal & Abbassi, Rouzbeh, 2021. "Importance of human reliability in process operation: A critical analysis," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    5. Ge, Xiangyu & Zhou, Qianxiang & Liu, Zhongqi, 2020. "Assessment of space station on-orbit maintenance task complexity," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    6. Dong, Xiaolu & Li, Zhizhong, 2011. "A study on the effect of training interval on the use of computerized emergency operatingprocedures," Reliability Engineering and System Safety, Elsevier, vol. 96(2), pages 250-256.
    7. Peng Liu & Zhizhong Li, 2014. "Human Error Data Collection and Comparison with Predictions by SPAR‐H," Risk Analysis, John Wiley & Sons, vol. 34(9), pages 1706-1719, September.
    8. Inger Lise Johansen & Marvin Rausand, 2014. "Defining complexity for risk assessment of sociotechnical systems: A conceptual framework," Journal of Risk and Reliability, , vol. 228(3), pages 272-290, June.
    9. Liu, Jianqiao & Zou, Yanhua & Wang, Wei & Zhang, Li & Liu, Xueyang & Ding, Qianqiao & Qin, Zhuomin & ÄŒepin, Marko, 2021. "Analysis of dependencies among performance shaping factors in human reliability analysis based on a system dynamics approach," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    10. Xu, Song & Li, Zhizhong & Song, Fei & Luo, Wei & Zhao, Qianyi & Salvendy, Gavriel, 2009. "Influence of step complexity and presentation style on step performance of computerized emergency operating procedures," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 670-674.
    11. Park, Jinkyun & Jung, Wondea, 2008. "A study on the validity of a task complexity measure for emergency operating procedures of nuclear power plants—Comparing task complexity scores with two sets of operator response time data obtained," Reliability Engineering and System Safety, Elsevier, vol. 93(4), pages 557-566.
    12. Park, Jinkyun & Kim, Hyeonmin, 2024. "A case study to address the limitation of accident scenario identifications with respect to diverse manual responses," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    13. Eugene Santos & Yan Zhao, 2017. "Automatic Emergence Detection in Complex Systems," Complexity, Hindawi, vol. 2017, pages 1-24, September.
    14. Park, Jinkyun, 2024. "A framework to determine the holistic multiplier of performance shaping factors in human reliability analysis – An explanatory study," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    15. Park, Jinkyun & Kim, Yochan, 2018. "A novel speech-act coding scheme to visualize the intention of crew communications to cope with simulated off-normal conditions of nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 236-246.
    16. Park, Jinkyun, 2011. "The use of a social network analysis technique to investigate the characteristics of crew communications in nuclear power plants—A feasibility study," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1275-1291.
    17. Venkataraghavan Krishnaswamy & R. P. Sundarraj, 2017. "Organizational implications of a comprehensive approach for cloud-storage sourcing," Information Systems Frontiers, Springer, vol. 19(1), pages 57-73, February.
    18. Park, Jooyoung & Boring, Ronald L. & Ulrich, Thomas A. & Lew, Roger & Lee, Sungheon & Park, Bumjun & Kim, Jonghyun, 2022. "A framework to collect human reliability analysis data for nuclear power plants using a simplified simulator and student operators," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    19. Kim, Yochan & Park, Jinkyun & Jung, Wondea & Jang, Inseok & Hyun Seong, Poong, 2015. "A statistical approach to estimating effects of performance shaping factors on human error probabilities of soft controls," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 378-387.
    20. Park, Jinkyun & Jung, Wondea & Yang, Joon-Eon, 2012. "Investigating the effect of communication characteristics on crew performance under the simulated emergency condition of nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 101(C), pages 1-13.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:100:y:2012:i:c:p:33-47. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.