IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v92y2014icp116-127.html
   My bibliography  Save this article

Assessing determinants of industrial waste reuse: The case of coal ash in the United States

Author

Listed:
  • Park, Joo Young

Abstract

Devising effective strategies to facilitate waste reuse depends on the solid understanding of reuse behaviors. However, previous studies of reuse behavior have been limited in scope, focusing mostly on household recycling behaviors or very limited types of industrial wastes. To gain a better understanding of the business reuse behaviors, this study examined the impact of various factors in technical, economic, regulatory, and behavioral categories in the case of coal ash generated in the United States. The results of fixed effect models for fly ash and bottom ash particularly showed the significance role of the behavioral factor. In both models, a proxy variable, which represents knowledge sharing among the power plants or the utility's decision-making, turned out to be statistically significant and had the largest coefficient estimates among a group of variables. This finding may imply that the characteristics of waste reuse behavior are determined more by business decision-making behaviors than by market or institutional factors. However, the role of the behavioral variable was stronger in the bottom ash models than in the fly ash models. While the reuse of bottom ash was determined primarily by the behavioral variable, fly ash reuse was determined by more diverse factors including economic and regulatory variables. This could be explained by material characteristics in relation to competing resources and the nature of reuse applications.

Suggested Citation

  • Park, Joo Young, 2014. "Assessing determinants of industrial waste reuse: The case of coal ash in the United States," Resources, Conservation & Recycling, Elsevier, vol. 92(C), pages 116-127.
  • Handle: RePEc:eee:recore:v:92:y:2014:i:c:p:116-127
    DOI: 10.1016/j.resconrec.2014.09.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344914001943
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2014.09.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dick van Beers & Albena Bossilkov & Glen Corder & Rene van Berkel, 2007. "Industrial Symbiosis in the Australian Minerals Industry: The Cases of Kwinana and Gladstone," Journal of Industrial Ecology, Yale University, vol. 11(1), pages 55-72, January.
    2. Leo Baas, 2008. "Industrial symbiosis in the Rotterdam Harbour and Industry Complex: reflections on the interconnection of the techno‐sphere with the social system," Business Strategy and the Environment, Wiley Blackwell, vol. 17(5), pages 330-340, July.
    3. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, December.
    4. Tudor, Terry & Adam, Emma & Bates, Margaret, 2007. "Drivers and limitations for the successful development and functioning of EIPs (eco-industrial parks): A literature review," Ecological Economics, Elsevier, vol. 61(2-3), pages 199-207, March.
    5. David Dequech, 2003. "Uncertainty and Economic Sociology:," American Journal of Economics and Sociology, Wiley Blackwell, vol. 62(3), pages 509-532, July.
    6. M. M. M. Teo & M. Loosemore, 2001. "A theory of waste behaviour in the construction industry," Construction Management and Economics, Taylor & Francis Journals, vol. 19(7), pages 741-751.
    7. Jeroen C. J. M. van den Bergh & Marco A. Janssen (ed.), 2005. "Economics of Industrial Ecology: Materials, Structural Change, and Spatial Scales," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262220717, December.
    8. Begum, Rawshan Ara & Siwar, Chamhuri & Pereira, Joy Jacqueline & Jaafar, Abdul Hamid, 2009. "Attitude and behavioral factors in waste management in the construction industry of Malaysia," Resources, Conservation & Recycling, Elsevier, vol. 53(6), pages 321-328.
    9. Lange Ian, 2009. "Evaluating Voluntary Measures with Treatment Spillovers: The Case of Coal Combustion Products Partnership," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 9(1), pages 1-22, September.
    10. Anne Hewes & Donald Lyons, 2008. "The Humanistic Side of Eco-Industrial Parks: Champions and the Role of Trust," Regional Studies, Taylor & Francis Journals, vol. 42(10), pages 1329-1342.
    11. Frank Boons & Marjolein Berends, 2001. "Stretching the boundary: the possibilities of flexibility as an organizational capability in industrial ecology," Business Strategy and the Environment, Wiley Blackwell, vol. 10(2), pages 115-124, March.
    12. David F. Batten, 2009. "Fostering Industrial Symbiosis With Agent‐Based Simulation and Participatory Modeling," Journal of Industrial Ecology, Yale University, vol. 13(2), pages 197-213, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Agrawal, Saurabh & Singh, Rajesh K. & Murtaza, Qasim, 2015. "A literature review and perspectives in reverse logistics," Resources, Conservation & Recycling, Elsevier, vol. 97(C), pages 76-92.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emilia Faria & Armando Caldeira-Pires & Cristiane Barreto, 2021. "Social, Economic, and Institutional Configurations of the Industrial Symbiosis Process: A Comparative Analysis of the Literature and a Proposed Theoretical and Analytical Framework," Sustainability, MDPI, vol. 13(13), pages 1-25, June.
    2. Aid, Graham & Eklund, Mats & Anderberg, Stefan & Baas, Leenard, 2017. "Expanding roles for the Swedish waste management sector in inter-organizational resource management," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 85-97.
    3. Hua Cui & Changhao Liu & Raymond Côté & Weifeng Liu, 2018. "Understanding the Evolution of Industrial Symbiosis with a System Dynamics Model: A Case Study of Hai Hua Industrial Symbiosis, China," Sustainability, MDPI, vol. 10(11), pages 1-25, October.
    4. Tian Yang & Changhao Liu & Raymond P. Côté & Jinwen Ye & Weifeng Liu, 2022. "Evaluating the Barriers to Industrial Symbiosis Using a Group AHP-TOPSIS Model," Sustainability, MDPI, vol. 14(11), pages 1-30, June.
    5. Udawatta, Nilupa & Zuo, Jian & Chiveralls, Keri & Zillante, George, 2015. "Improving waste management in construction projects: An Australian study," Resources, Conservation & Recycling, Elsevier, vol. 101(C), pages 73-83.
    6. Heni Fitriani & Saheed Ajayi & Sunkuk Kim, 2022. "Analysis of the Underlying Causes of Waste Generation in Indonesia’s Construction Industry," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
    7. Shanti Gamper-Rabindran & Stephen Finger, 2013. "Does industry self-regulation reduce pollution? Responsible Care in the chemical industry," Journal of Regulatory Economics, Springer, vol. 43(1), pages 1-30, January.
    8. Kokoulina, L. & Ermolaeva, L., 2016. "Championing processes and the emergence of industrial symbiosis: Case of Yandex data center in Finland," Working Papers 6446, Graduate School of Management, St. Petersburg State University.
    9. Emilia Faria & Cristiane Barreto & Armando Caldeira-Pires & Jorge Alfredo Cerqueira Streit & Patricia Guarnieri, 2023. "Brazilian Circular Economy Pilot Project: Integrating Local Stakeholders’ Perception and Social Context in Industrial Symbiosis Analyses," Sustainability, MDPI, vol. 15(4), pages 1-28, February.
    10. Luca Fraccascia & Ilaria Giannoccaro & Vito Albino, 2017. "Efficacy of Landfill Tax and Subsidy Policies for the Emergence of Industrial Symbiosis Networks: An Agent-Based Simulation Study," Sustainability, MDPI, vol. 9(4), pages 1-18, March.
    11. Fraccascia, Luca, 2020. "Quantifying the direct network effect for online platforms supporting industrial symbiosis: an agent-based simulation study," Ecological Economics, Elsevier, vol. 170(C).
    12. Jiménez-Rivero, Ana & García-Navarro, Justo, 2017. "Exploring factors influencing post-consumer gypsum recycling and landfilling in the European Union," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 116-123.
    13. Sara Tessitore & Tiberio Daddi & Fabio Iraldo, 2015. "Eco-Industrial Parks Development and Integrated Management Challenges: Findings from Italy," Sustainability, MDPI, vol. 7(8), pages 1-16, July.
    14. Bakshan, Amal & Srour, Issam & Chehab, Ghassan & El-Fadel, Mutasem & Karaziwan, Jalal, 2017. "Behavioral determinants towards enhancing construction waste management: A Bayesian Network analysis," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 274-284.
    15. Devrim Murat Yazan & Vahid Yazdanpanah & Luca Fraccascia, 2020. "Learning strategic cooperative behavior in industrial symbiosis: A game‐theoretic approach integrated with agent‐based simulation," Business Strategy and the Environment, Wiley Blackwell, vol. 29(5), pages 2078-2091, July.
    16. Li, Mei & Yang, Jay, 2014. "Critical factors for waste management in office building retrofit projects in Australia," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 85-98.
    17. Simboli, Alberto & Taddeo, Raffaella & Morgante, Anna, 2015. "The potential of Industrial Ecology in agri-food clusters (AFCs): A case study based on valorisation of auxiliary materials," Ecological Economics, Elsevier, vol. 111(C), pages 65-75.
    18. Fraccascia, Luca & Yazan, Devrim Murat & Albino, Vito & Zijm, Henk, 2020. "The role of redundancy in industrial symbiotic business development: A theoretical framework explored by agent-based simulation," International Journal of Production Economics, Elsevier, vol. 221(C).
    19. Anna Lütje & Volker Wohlgemuth, 2020. "Requirements Engineering for an Industrial Symbiosis Tool for Industrial Parks Covering System Analysis, Transformation Simulation and Goal Setting," Administrative Sciences, MDPI, vol. 10(1), pages 1-24, February.
    20. Ilaria Giannoccaro & Valeria Zaza & Luca Fraccascia, 2023. "Designing regional industrial symbiosis networks: The case of Apulia region," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(3), pages 1475-1514, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:92:y:2014:i:c:p:116-127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.