IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v82y2014icp63-74.html
   My bibliography  Save this article

Regional water flows – Assessing opportunities for sustainable management

Author

Listed:
  • Marteleira, Rita
  • Pinto, Guilherme
  • Niza, Samuel

Abstract

Sustainable water management may strongly benefit from an integrated approach. Additionally, an integrated urban water management policy considering the various urban water flows and the possible interactions between the water sector and the remaining urban activities can benefit if based on an urban metabolism based analysis. This article assesses water flows of Lisbon Metropolitan Area considering the conventional water supply system and wastewater treatment system flows and also the hydrological cycle flows, and proposes a global set of indicators to perform a benchmarking analysis of the 18 municipalities of the region. Results highlighted the heterogeneous nature of the Metropolitan area in terms of water management – either in terms of management entities (predominantly public or municipalized), water consumption (varying from 227.4l/hab.day in Palmela to 402.7l/hab.day in Seixal), wastewater treatment (10 out of 18 municipalities already undergo secondary or tertiary wastewater treatments), runoff indices (depending on the municipality's level of urbanization), among other. Through the output volumes it was also assessed the potential of the municipalities to reuse wastewater for potable or non-potable urban uses, as well as the potential to harvest and harness rainwater. The main constraints to an integrated water management were identified and some potential solutions were measured and proposed even though they need further assessment, particularly in a cost-benefit perspective.

Suggested Citation

  • Marteleira, Rita & Pinto, Guilherme & Niza, Samuel, 2014. "Regional water flows – Assessing opportunities for sustainable management," Resources, Conservation & Recycling, Elsevier, vol. 82(C), pages 63-74.
  • Handle: RePEc:eee:recore:v:82:y:2014:i:c:p:63-74
    DOI: 10.1016/j.resconrec.2013.10.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344913002231
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2013.10.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manios, Thrassyvoulos & Tsanis, Ioannis K., 2006. "Evaluating water resources availability and wastewater reuse importance in the water resources management of small Mediterranean municipal districts," Resources, Conservation & Recycling, Elsevier, vol. 47(3), pages 245-259.
    2. Steven Kenway & Alan Gregory & Joseph McMahon, 2011. "Urban Water Mass Balance Analysis," Journal of Industrial Ecology, Yale University, vol. 15(5), pages 693-706, October.
    3. Samuel Niza & Leonardo Rosado & Paulo Ferrão, 2009. "Urban Metabolism: Methodological Advances in Urban Material Flow Accounting Based on the Lisbon Case Study," Journal of Industrial Ecology, Yale University, vol. 13(3), pages 384-405, June.
    4. Christopher Kennedy & John Cuddihy & Joshua Engel‐Yan, 2007. "The Changing Metabolism of Cities," Journal of Industrial Ecology, Yale University, vol. 11(2), pages 43-59, April.
    5. Mandal, Deepika & Labhasetwar, Pawan & Dhone, Shankar & Dubey, Ajay Shankar & Shinde, Gangadhar & Wate, Satish, 2011. "Water conservation due to greywater treatment and reuse in urban setting with specific context to developing countries," Resources, Conservation & Recycling, Elsevier, vol. 55(3), pages 356-361.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asian Development Bank (ADB) & Asian Development Bank (ADB) & Asian Development Bank (ADB) & Asian Development Bank (ADB), 2014. "Urban Metabolism of Six Asian Cities," ADB Reports RPT146817-2, Asian Development Bank (ADB).
    2. Serrao-Neumann, Silvia & Renouf, Marguerite A. & Morgan, Edward & Kenway, Steven J. & Low Choy, Darryl, 2019. "Urban water metabolism information for planning water sensitive city-regions," Land Use Policy, Elsevier, vol. 88(C).
    3. Juanjo Galan & Daniela Perrotti, 2019. "Incorporating Metabolic Thinking into Regional Planning: The Case of the Sierra Calderona Strategic Plan," Urban Planning, Cogitatio Press, vol. 4(1), pages 152-171.
    4. Bodini, Antonio & Bondavalli, Cristina & Allesina, Stefano, 2012. "Cities as ecosystems: Growth, development and implications for sustainability," Ecological Modelling, Elsevier, vol. 245(C), pages 185-198.
    5. Pina, André & Ferrão, Paulo & Ferreira, Daniela & Santos, Luís & Monit, Michal & Rodrigues, João F.D. & Niza, Samuel, 2016. "The physical structure of urban economies — Comparative assessment," Technological Forecasting and Social Change, Elsevier, vol. 113(PB), pages 220-229.
    6. Daniela Perrotti & Sven Stremke, 2020. "Can urban metabolism models advance green infrastructure planning? Insights from ecosystem services research," Environment and Planning B, , vol. 47(4), pages 678-694, May.
    7. Davide Longato & Giulia Lucertini & Michele Dalla Fontana & Francesco Musco, 2019. "Including Urban Metabolism Principles in Decision-Making: A Methodology for Planning Waste and Resource Management," Sustainability, MDPI, vol. 11(7), pages 1-19, April.
    8. Yanxian Li & Jiawen Wang & Dan Xian & Yan Zhang & Xiangyi Yu, 2021. "Regional consumption, material flows, and their driving forces: A case study of China's Beijing–Tianjin–Hebei (Jing–Jin–Ji) urban agglomeration," Journal of Industrial Ecology, Yale University, vol. 25(3), pages 751-764, June.
    9. David Pérez-González & Gian Carlo Delgado-Ramos & Lilia Cedillo Ramírez & Rosalva Loreto López & María Elena Ramos Cassellis & José Víctor Rosendo Tamariz Flores & Ricardo Darío Peña Moreno, 2023. "Puebla City Water Supply from the Perspective of Urban Water Metabolism," Sustainability, MDPI, vol. 15(19), pages 1-34, October.
    10. Cornelis Leeuwen & Jos Frijns & Annemarie Wezel & Frans Ven, 2012. "City Blueprints: 24 Indicators to Assess the Sustainability of the Urban Water Cycle," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2177-2197, June.
    11. Yung-Jaan Lee, 2022. "Hybrid Ecological Footprint of Taipei," Sustainability, MDPI, vol. 14(7), pages 1-16, April.
    12. Massimo Palme & Agnese Salvati, 2020. "Sustainability and Urban Metabolism," Sustainability, MDPI, vol. 12(1), pages 1-3, January.
    13. Yun-Yun Ko & Yin-Hao Chiu, 2020. "Empirical Study of Urban Development Evaluation Indicators Based on the Urban Metabolism Concept," Sustainability, MDPI, vol. 12(17), pages 1-15, September.
    14. Koenraad Danneels, 2023. "THE POLITICS OF URBAN ECOLOGY: Paul Duvigneaud and the Rise of Ecological Urbanism in Brussels during the 1970s," International Journal of Urban and Regional Research, Wiley Blackwell, vol. 47(5), pages 792-808, September.
    15. Daniela Perrotti, 2019. "Evaluating urban metabolism assessment methods and knowledge transfer between scientists and practitioners: A combined framework for supporting practice-relevant research," Environment and Planning B, , vol. 46(8), pages 1458-1479, October.
    16. Marco Bianchi & Carlos Tapia & Ikerne del Valle, 2020. "Monitoring domestic material consumption at lower territorial levels: A novel data downscaling method," Journal of Industrial Ecology, Yale University, vol. 24(5), pages 1074-1087, October.
    17. Xiaoyue Wang & Shuyao Wu & Shuangcheng Li, 2017. "Urban Metabolism of Three Cities in Jing-Jin-Ji Urban Agglomeration, China: Using the MuSIASEM Approach," Sustainability, MDPI, vol. 9(8), pages 1-21, August.
    18. Jennie Moore, 2015. "Ecological Footprints and Lifestyle Archetypes: Exploring Dimensions of Consumption and the Transformation Needed to Achieve Urban Sustainability," Sustainability, MDPI, vol. 7(4), pages 1-17, April.
    19. John A. Paravantis & Panagiotis D. Tasios & Vasileios Dourmas & Georgios Andreakos & Konstantinos Velaoras & Nikoletta Kontoulis & Panagiota Mihalakakou, 2021. "A Regression Analysis of the Carbon Footprint of Megacities," Sustainability, MDPI, vol. 13(3), pages 1-24, January.
    20. Allisa G. Hastie & Christopher M. Chini & Ashlynn S. Stillwell, 2022. "A mass balance approach to urban water analysis using multi‐resolution data," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 213-224, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:82:y:2014:i:c:p:63-74. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.