IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v64y2012icp3-12.html
   My bibliography  Save this article

Harvesting urban resources towards more resilient cities

Author

Listed:
  • Agudelo-Vera, Claudia M.
  • Leduc, Wouter R.W.A.
  • Mels, Adriaan R.
  • Rijnaarts, Huub H.M.

Abstract

With accelerating global changes, cities have to cope with growing pressures, especially for resource supply. Cities may be considered as resources reservoirs and producers of secondary resources. This paper introduces the concept of urban harvesting as a management tool to change inefficient linear urban resource usage and waste production into sustainable urban metabolism. The Urban Harvest concept includes urban metabolism and closing urban cycles by harvesting urban resources. The purpose of this study was to quantify the potentials to harvest water and energy at different scales. We investigated potentials for the Netherlands. Results show that at national scale, potentials can cover up to 100% of electricity demand, 55% of heat demand and 52% of tap water demand. At neighborhood level, similar percentages were found for energy. Only 43% of water demand was achieved, due to fact that treatment measures were not considered. These results indicate the large potential of cities as providers of their own resources. Therefore urban resources management is a key element of future city design towards more resilient cities.

Suggested Citation

  • Agudelo-Vera, Claudia M. & Leduc, Wouter R.W.A. & Mels, Adriaan R. & Rijnaarts, Huub H.M., 2012. "Harvesting urban resources towards more resilient cities," Resources, Conservation & Recycling, Elsevier, vol. 64(C), pages 3-12.
  • Handle: RePEc:eee:recore:v:64:y:2012:i:c:p:3-12
    DOI: 10.1016/j.resconrec.2012.01.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344912000250
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2012.01.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jane L. Price & Jeremy B. Joseph, 2000. "Demand management - a basis for waste policy: a critical review of the applicability of the waste hierarchy in terms of achieving sustainable waste management," Sustainable Development, John Wiley & Sons, Ltd., vol. 8(2), pages 96-105.
    2. Johan Rockström & Will Steffen & Kevin Noone & Åsa Persson & F. Stuart Chapin & Eric F. Lambin & Timothy M. Lenton & Marten Scheffer & Carl Folke & Hans Joachim Schellnhuber & Björn Nykvist & Cynthia , 2009. "A safe operating space for humanity," Nature, Nature, vol. 461(7263), pages 472-475, September.
    3. Fridolin Krausmann & Marina Fischer-Kowalski & Heinz Schandl & Nina Eisenmenger, 2008. "The Global Sociometabolic Transition," Journal of Industrial Ecology, Yale University, vol. 12(5-6), pages 637-656, October.
    4. Christopher Kennedy & John Cuddihy & Joshua Engel‐Yan, 2007. "The Changing Metabolism of Cities," Journal of Industrial Ecology, Yale University, vol. 11(2), pages 43-59, April.
    5. Paul H. Brunner, 2007. "Reshaping Urban Metabolism," Journal of Industrial Ecology, Yale University, vol. 11(2), pages 11-13, April.
    6. Xuemei Bai, 2007. "Industrial Ecology and the Global Impacts of Cities," Journal of Industrial Ecology, Yale University, vol. 11(2), pages 1-6, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael M. Santos & Ana Vaz Ferreira & João C. G. Lanzinha, 2023. "The Possibilities of Capturing Rainwater and Reducing the Impact of Floods: A Proposal for the City of Beira, Mozambique," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
    2. Daniel Otero Peña & Daniela Perrotti & Eugene Mohareb, 2022. "Advancing urban metabolism studies through GIS data: Resource flows, open space networks, and vulnerable communities in Mexico City," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1333-1349, August.
    3. Pan, Xing & Dang, Yuheng & Wang, Huixiong & Hong, Dongpao & Li, Yuehong & Deng, Hongxu, 2022. "Resilience model and recovery strategy of transportation network based on travel OD-grid analysis," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    4. Barbati, M. & Figueira, J.R. & Greco, S. & Ishizaka, A. & Panaro, S., 2023. "A multiple criteria methodology for priority based portfolio selection," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).
    5. Gupta, Akash Som & Khatiwada, Dilip, 2024. "Investigating the sustainability of biogas recovery systems in wastewater treatment plants- A circular bioeconomy approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    6. Oliveira, Mariana & Cocozza, Annalisa & Zucaro, Amalia & Santagata, Remo & Ulgiati, Sergio, 2021. "Circular economy in the agro-industry: Integrated environmental assessment of dairy products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    7. Huuhka, S. & Kaasalainen, T. & Hakanen, J.H. & Lahdensivu, J., 2015. "Reusing concrete panels from buildings for building: Potential in Finnish 1970s mass housing," Resources, Conservation & Recycling, Elsevier, vol. 101(C), pages 105-121.
    8. van der Hoek, Jan Peter & de Fooij, Heleen & Struker, André, 2016. "Wastewater as a resource: Strategies to recover resources from Amsterdam’s wastewater," Resources, Conservation & Recycling, Elsevier, vol. 113(C), pages 53-64.
    9. Ziyi Wang & Zengqiao Chen & Cuiping Ma & Ronald Wennersten & Qie Sun, 2022. "Nationwide Evaluation of Urban Energy System Resilience in China Using a Comprehensive Index Method," Sustainability, MDPI, vol. 14(4), pages 1-36, February.
    10. Guo, Ru & Zhao, Yaru & Shi, Yu & Li, Fengting & Hu, Jing & Yang, Haizhen, 2017. "Low carbon development and local sustainability from a carbon balance perspective," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 270-279.
    11. Tran Thu Trang & Simon R. Bush & Judith van Leeuwen, 2023. "Enhancing institutional capacity in a centralized state: The case of industrial water use efficiency in Vietnam," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 210-222, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asian Development Bank (ADB) & Asian Development Bank (ADB) & Asian Development Bank (ADB) & Asian Development Bank (ADB), 2014. "Urban Metabolism of Six Asian Cities," ADB Reports RPT146817-2, Asian Development Bank (ADB).
    2. Schäffler, Alexis & Swilling, Mark, 2013. "Valuing green infrastructure in an urban environment under pressure — The Johannesburg case," Ecological Economics, Elsevier, vol. 86(C), pages 246-257.
    3. John, Beatrice & Luederitz, Christopher & Lang, Daniel J. & von Wehrden, Henrik, 2019. "Toward Sustainable Urban Metabolisms. From System Understanding to System Transformation," Ecological Economics, Elsevier, vol. 157(C), pages 402-414.
    4. Fishman, Tomer & Schandl, Heinz & Tanikawa, Hiroki, 2015. "The socio-economic drivers of material stock accumulation in Japan's prefectures," Ecological Economics, Elsevier, vol. 113(C), pages 76-84.
    5. Zhang, Yan & Liu, Hong & Chen, Bin, 2013. "Comprehensive evaluation of the structural characteristics of an urban metabolic system: Model development and a case study of Beijing," Ecological Modelling, Elsevier, vol. 252(C), pages 106-113.
    6. Heba Allah Essam E. Khalil & Ahmad Al‐Ahwal, 2021. "Reunderstanding Cairo through urban metabolism: Formal versus informal districts resource flow performance in fast urbanizing cities," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 176-192, February.
    7. Liu, Xiuli & Guo, Pibin & Yue, Xiaohang & Qi, Xiaoyan & Guo, Shufeng & Zhou, Xijun, 2021. "Measuring metabolic efficiency of the Beijing–Tianjin–Hebei urban agglomeration: A slacks-based measures method," Resources Policy, Elsevier, vol. 70(C).
    8. Andreas Gassner & Jakob Lederer & Johann Fellner, 2020. "Material stock development of the transport sector in the city of Vienna," Journal of Industrial Ecology, Yale University, vol. 24(6), pages 1364-1378, December.
    9. Schuster, Viktoria & Ciacci, Luca & Passarini, Fabrizio, 2023. "Mining the in-use stock of energy-transition materials for closed-loop e-mobility," Resources Policy, Elsevier, vol. 86(PB).
    10. Baynes, Timothy & Lenzen, Manfred & Steinberger, Julia K. & Bai, Xuemei, 2011. "Comparison of household consumption and regional production approaches to assess urban energy use and implications for policy," Energy Policy, Elsevier, vol. 39(11), pages 7298-7309.
    11. Zilong Zhang & Xingpeng Chen & Peter Heck, 2014. "Emergy-Based Regional Socio-Economic Metabolism Analysis: An Application of Data Envelopment Analysis and Decomposition Analysis," Sustainability, MDPI, vol. 6(12), pages 1-21, November.
    12. Piñero, Pablo & Pérez-Neira, David & Infante-Amate, Juan & Chas-Amil, María L. & Doldán-García, Xoán R., 2020. "Unequal raw material exchange between and within countries: Galicia (NW Spain) as a core-periphery economy," Ecological Economics, Elsevier, vol. 172(C).
    13. Arjan Van Timmeren & Jonna Zwetsloot & Han Brezet & Sacha Silvester, 2012. "Sustainable Urban Regeneration Based on Energy Balance," Sustainability, MDPI, vol. 4(7), pages 1-22, July.
    14. Jakob Lederer & Andreas Gassner & Florian Keringer & Ursula Mollay & Christoph Schremmer & Johann Fellner, 2019. "Material Flows and Stocks in the Urban Building Sector: A Case Study from Vienna for the Years 1990–2015," Sustainability, MDPI, vol. 12(1), pages 1-25, December.
    15. Yang, Dewei & Kao, William Tze Ming & Zhang, Guoqin & Zhang, Nanyang, 2014. "Evaluating spatiotemporal differences and sustainability of Xiamen urban metabolism using emergy synthesis," Ecological Modelling, Elsevier, vol. 272(C), pages 40-48.
    16. Pauliuk, Stefan & Hertwich, Edgar G., 2015. "Socioeconomic metabolism as paradigm for studying the biophysical basis of human societies," Ecological Economics, Elsevier, vol. 119(C), pages 83-93.
    17. Farreny, Ramon & Gabarrell, Xavier & Rieradevall, Joan, 2008. "Energy intensity and greenhouse gas emission of a purchase in the retail park service sector: An integrative approach," Energy Policy, Elsevier, vol. 36(6), pages 1957-1968, June.
    18. Røpke, Inge, 2016. "Complementary system perspectives in ecological macroeconomics — The example of transition investments during the crisis," Ecological Economics, Elsevier, vol. 121(C), pages 237-245.
    19. Distelkamp, Martin & Meyer, Mark, 2019. "Pathways to a Resource-Efficient and Low-Carbon Europe," Ecological Economics, Elsevier, vol. 155(C), pages 88-104.
    20. Adél Strydom & Josephine Kaviti Musango & Paul K. Currie, 2019. "Conceptualizing Household Energy Metabolism: A Methodological Contribution," Energies, MDPI, vol. 12(21), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:64:y:2012:i:c:p:3-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.