IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v54y2010i11p972-984.html
   My bibliography  Save this article

An estimation of the energy potential of agro-industrial residues in Spain

Author

Listed:
  • Gómez, Antonio
  • Zubizarreta, Javier
  • Rodrigues, Marcos
  • Dopazo, César
  • Fueyo, Norberto

Abstract

In this paper, we assess the potential for the generation of electricity in Spain from agro-industrial residues. The industries considered are olive-oil mills, rice mills, wineries, dairy plants, breweries and wood, meat and nut processing plants. The methodology used is based on statistical data, and is integrated into a Geographical Information System (GIS) from which geo-referenced results are obtained. The waste-to-electricity technologies analyzed are: grate firing followed by steam turbine, co-firing in coal power plants and anaerobic digestion plus internal combustion engine. The combined potential for the agro-industrial residues in Spain is estimated at 2625ktoe/year of primary energy (1.85% of the primary-energy consumption in Spain in 2008). Olive mill and wood processing residues have the largest energy potentials. Comparisons are presented with (partial) results from other studies. Considering only profitable plants, grate-firing followed by steam-turbine cycle is the conversion option with the largest potential, totaling 653MWe and an electrical generation of 4.57TWh (1.44% of the gross electrical generation in Spain in 2008). A complete sensitivity analysis is done to investigate the influence of the different economic parameters. A reduction by 50% of the investment costs of grate firing would increase profitable power to 1102MWe (and production to 7.70TWh).

Suggested Citation

  • Gómez, Antonio & Zubizarreta, Javier & Rodrigues, Marcos & Dopazo, César & Fueyo, Norberto, 2010. "An estimation of the energy potential of agro-industrial residues in Spain," Resources, Conservation & Recycling, Elsevier, vol. 54(11), pages 972-984.
  • Handle: RePEc:eee:recore:v:54:y:2010:i:11:p:972-984
    DOI: 10.1016/j.resconrec.2010.02.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344910000455
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2010.02.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bridgwater, A. V. & Toft, A. J. & Brammer, J. G., 2002. "A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(3), pages 181-246, September.
    2. Boukis, Ioannis & Vassilakos, Nikos & Karellas, Sotirios & Kakaras, Emmanuel, 2009. "Techno-economic analysis of the energy exploitation of biomass residues in Heraklion Prefecture--Crete," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 362-377, February.
    3. Kapellakis, I.E. & Tsagarakis, K.P. & Avramaki, Ch. & Angelakis, A.N., 2006. "Olive mill wastewater management in river basins: A case study in Greece," Agricultural Water Management, Elsevier, vol. 82(3), pages 354-370, April.
    4. Ericsson, Karin, 2007. "Co-firing—A strategy for bioenergy in Poland?," Energy, Elsevier, vol. 32(10), pages 1838-1847.
    5. Murphy, J. D. & McKeogh, E. & Kiely, G., 2004. "Technical/economic/environmental analysis of biogas utilisation," Applied Energy, Elsevier, vol. 77(4), pages 407-427, April.
    6. Faaij, Andre P.C., 2006. "Bio-energy in Europe: changing technology choices," Energy Policy, Elsevier, vol. 34(3), pages 322-342, February.
    7. Penniall, C.L. & Williamson, C.J., 2009. "Feasibility study into the potential for gasification plant in the New Zealand wood processing industry," Energy Policy, Elsevier, vol. 37(9), pages 3377-3386, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martire, Salvatore & Castellani, Valentina & Sala, Serenella, 2015. "Carrying capacity assessment of forest resources: Enhancing environmental sustainability in energy production at local scale," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 11-20.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Delivand, Mitra Kami & Barz, Mirko & Gheewala, Shabbir H. & Sajjakulnukit, Boonrod, 2011. "Economic feasibility assessment of rice straw utilization for electricity generating through combustion in Thailand," Applied Energy, Elsevier, vol. 88(11), pages 3651-3658.
    2. Hossain, A.K. & Davies, P.A., 2013. "Pyrolysis liquids and gases as alternative fuels in internal combustion engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 165-189.
    3. Lindfeldt, Erik G. & Saxe, Maria & Magnusson, Mimmi & Mohseni, Farzad, 2010. "Strategies for a road transport system based on renewable resources - The case of an import-independent Sweden in 2025," Applied Energy, Elsevier, vol. 87(6), pages 1836-1845, June.
    4. Tsita, Katerina G. & Pilavachi, Petros A., 2013. "Evaluation of next generation biomass derived fuels for the transport sector," Energy Policy, Elsevier, vol. 62(C), pages 443-455.
    5. Sebastián, F. & Royo, J. & Gómez, M., 2011. "Cofiring versus biomass-fired power plants: GHG (Greenhouse Gases) emissions savings comparison by means of LCA (Life Cycle Assessment) methodology," Energy, Elsevier, vol. 36(4), pages 2029-2037.
    6. Danilo Arcentales-Bastidas & Carla Silva & Angel D. Ramirez, 2022. "The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex," Energies, MDPI, vol. 15(15), pages 1-24, July.
    7. Maung, Thein A. & McCarl, Bruce A., 2013. "Economic factors influencing potential use of cellulosic crop residues for electricity generation," Energy, Elsevier, vol. 56(C), pages 81-91.
    8. Gasol, Carles M. & Martínez, Sergio & Rigola, Miquel & Rieradevall, Joan & Anton, Assumpció & Carrasco, Juan & Ciria, Pilar & Gabarrell, Xavier, 2009. "Feasibility assessment of poplar bioenergy systems in the Southern Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 801-812, May.
    9. Wen, Shaoting & Buyukada, Musa & Evrendilek, Fatih & Liu, Jingyong, 2020. "Uncertainty and sensitivity analyses of co-combustion/pyrolysis of textile dyeing sludge and incense sticks: Regression and machine-learning models," Renewable Energy, Elsevier, vol. 151(C), pages 463-474.
    10. Standish, B. & Lutge, B., 2013. "Assessing the potential for electricity generation from animal waste biogas on South African farms," Agrekon, Agricultural Economics Association of South Africa (AEASA), vol. 52(2), March.
    11. Thyrel, M. & Samuelsson, R. & Finell, M. & Lestander, T.A., 2013. "Critical ash elements in biorefinery feedstock determined by X-ray spectroscopy," Applied Energy, Elsevier, vol. 102(C), pages 1288-1294.
    12. Mehrdad Massoudi & Ping Wang, 2013. "Slag Behavior in Gasifiers. Part II: Constitutive Modeling of Slag," Energies, MDPI, vol. 6(2), pages 1-32, February.
    13. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    14. Sérgio Ferreira & Eliseu Monteiro & Luís Calado & Valter Silva & Paulo Brito & Cândida Vilarinho, 2019. "Experimental and Modeling Analysis of Brewers´ Spent Grains Gasification in a Downdraft Reactor," Energies, MDPI, vol. 12(23), pages 1-18, November.
    15. Hussain, C.M. Iftekhar & Norton, Brian & Duffy, Aidan, 2017. "Technological assessment of different solar-biomass systems for hybrid power generation in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1115-1129.
    16. Morin, Philippe & Marcos, Bernard & Moresoli, Christine & Laflamme, Claude B., 2010. "Economic and environmental assessment on the energetic valorization of organic material for a municipality in Quebec, Canada," Applied Energy, Elsevier, vol. 87(1), pages 275-283, January.
    17. Konečná, Eva & Teng, Sin Yong & Máša, Vítězslav, 2020. "New insights into the potential of the gas microturbine in microgrids and industrial applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    18. Li, Yangyang & Jin, Yiying & Li, Hailong & Borrion, Aiduan & Yu, Zhixin & Li, Jinhui, 2018. "Kinetic studies on organic degradation and its impacts on improving methane production during anaerobic digestion of food waste," Applied Energy, Elsevier, vol. 213(C), pages 136-147.
    19. Nasrin Aghamohammadi & Stacy Simai Reginald & Ahmad Shamiri & Ali Akbar Zinatizadeh & Li Ping Wong & Nik Meriam Binti Nik Sulaiman, 2016. "An Investigation of Sustainable Power Generation from Oil Palm Biomass: A Case Study in Sarawak," Sustainability, MDPI, vol. 8(5), pages 1-19, April.
    20. Lauer, Markus & Hansen, Jason K. & Lamers, Patrick & Thrän, Daniela, 2018. "Making money from waste: The economic viability of producing biogas and biomethane in the Idaho dairy industry," Applied Energy, Elsevier, vol. 222(C), pages 621-636.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:54:y:2010:i:11:p:972-984. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.