IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v52y2008i10p1121-1131.html
   My bibliography  Save this article

Hot stage processing of metallurgical slags

Author

Listed:
  • Durinck, Dirk
  • Engström, Fredrik
  • Arnout, Sander
  • Heulens, Jeroen
  • Jones, Peter Tom
  • Björkman, Bo
  • Blanpain, Bart
  • Wollants, Patrick

Abstract

Slags are an indispensable tool for the pyrometallurgical industry to extract and purify metals at competitive prices. Large volumes are produced annually, leading to important economical and ecological issues regarding their afterlife. To maximise the recycling potential, slag processing has become an integral part of the valorisation chain. However, processing is often directed solely towards the cooled slag. In this article, the authors present an overview of the scientific studies dedicated to the hot stage of slag processing, i.e. from the moment of slag/metal separation to complete cooling at the slag yard. Using in-depth case studies on C2S driven slag disintegration and chromium leaching, it is shown that the functional properties of the cooled slag can be significantly enhanced by small or large scale additions to the high temperature slag and/or variations in the cooling path, even without interfering with the metallurgical process. The technology to implement such hot stage processing steps in an industrial environment is currently available. No innovative technological solutions are required. Rather, advances in hot stage slag processing seem to rely primarily on further unravelling the relationships between process, structure and properties. This knowledge is required to identify the critical process parameters for quality control. Moreover, it could even allow to consciously alter slag compositions and cooling paths to tailor the slag to a certain application.

Suggested Citation

  • Durinck, Dirk & Engström, Fredrik & Arnout, Sander & Heulens, Jeroen & Jones, Peter Tom & Björkman, Bo & Blanpain, Bart & Wollants, Patrick, 2008. "Hot stage processing of metallurgical slags," Resources, Conservation & Recycling, Elsevier, vol. 52(10), pages 1121-1131.
  • Handle: RePEc:eee:recore:v:52:y:2008:i:10:p:1121-1131
    DOI: 10.1016/j.resconrec.2008.07.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344908000931
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2008.07.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kumar, Sanjay & Kumar, Rakesh & Bandopadhyay, Amitava, 2006. "Innovative methodologies for the utilisation of wastes from metallurgical and allied industries," Resources, Conservation & Recycling, Elsevier, vol. 48(4), pages 301-314.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gahan, Chandra Sekhar & Sundkvist, Jan-Eric & Engström, Fredrik & Sandström, Åke, 2011. "Utilisation of steel slags as neutralising agents in biooxidation of a refractory gold concentrate and their influence on the subsequent cyanidation," Resources, Conservation & Recycling, Elsevier, vol. 55(5), pages 541-547.
    2. Keng-Ta Lin & Her-Yung Wang & Yi-Ta Hsieh & Tien-Chun Kao, 2023. "Effect of High Temperature on the Expansion and Durability of SSRSC," Sustainability, MDPI, vol. 15(13), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Yi & Zhang, Zhouyi & Zhang, Yijun & Cheng, Jinhua, 2022. "Technological innovation and supply of critical metals: A perspective of industrial chains," Resources Policy, Elsevier, vol. 79(C).
    2. Zhang, Tongsheng & Yu, Qijun & Wei, Jiangxiong & Li, Jianxin & Zhang, Pingping, 2011. "Preparation of high performance blended cements and reclamation of iron concentrate from basic oxygen furnace steel slag," Resources, Conservation & Recycling, Elsevier, vol. 56(1), pages 48-55.
    3. Zhang, Tongsheng & Gao, Peng & Gao, Pinhai & Wei, Jiangxiong & Yu, Qijun, 2013. "Effectiveness of novel and traditional methods to incorporate industrial wastes in cementitious materials—An overview," Resources, Conservation & Recycling, Elsevier, vol. 74(C), pages 134-143.
    4. Ali Sinan Soğancı & Yavuz Yenginar & İlyas Özkan & Yusuf Güzel & Adnan Özdemir, 2024. "Waste Management of Red Mud and Fly Ash to Utilize in Road Subgrade Material," Sustainability, MDPI, vol. 16(7), pages 1-14, April.
    5. Song, Yi & Ruan, Shengzhe & Cheng, Jinhua & Zhang, Yijun, 2023. "Technological change in critical metallic mineral sub-sectors and its impacts on mineral supply: Evidence from China," Resources Policy, Elsevier, vol. 85(PA).
    6. Kumar, Rakesh & Kumar, Sanjay & Mehrotra, S.P., 2007. "Towards sustainable solutions for fly ash through mechanical activation," Resources, Conservation & Recycling, Elsevier, vol. 52(2), pages 157-179.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:52:y:2008:i:10:p:1121-1131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.