IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v85y2023ipas0301420723005615.html
   My bibliography  Save this article

Technological change in critical metallic mineral sub-sectors and its impacts on mineral supply: Evidence from China

Author

Listed:
  • Song, Yi
  • Ruan, Shengzhe
  • Cheng, Jinhua
  • Zhang, Yijun

Abstract

Ensuring the supply of critical metallic mineral is vital to addressing climate issues, and technological change is recognized as an important way to effectively improve the supply of critical metallic mineral. Taking 14 critical metallic mineral sub-sectors in China as samples, this study first measures their technological change (TC), which is decomposed into magnitude of technological change (MTC) and biased technological change (BTC). Then, the impact of technological change on the supply of critical mineral is explored and heterogeneity is considered. Finally, production scale and production cost are introduced as mediating variables to explore their influence mechanisms. The results show that: (1) technological change promotes the improvement of green total factor productivity (GTFP) of critical metallic mineral sub-sectors in China from two dimensions of MTC and BTC, in which aluminum sector has the strongest promoting effect while antimony sector has the lowest promoting effect. (2) TC and MTC in critical metallic mineral sub-sectors have a significant contribution to mineral supply, but there is heterogeneity, with technological change having a greater impact on the mining industry than the smelting industry. (3) Technological change in critical metallic mineral sub-sectors can indirectly guarantee the supply of mineral products by increasing production scale and reducing production costs. In summary, more policies that are conducive to technological change should be developed, and it helps to guarantee the supply of critical metallic minerals.

Suggested Citation

  • Song, Yi & Ruan, Shengzhe & Cheng, Jinhua & Zhang, Yijun, 2023. "Technological change in critical metallic mineral sub-sectors and its impacts on mineral supply: Evidence from China," Resources Policy, Elsevier, vol. 85(PA).
  • Handle: RePEc:eee:jrpoli:v:85:y:2023:i:pa:s0301420723005615
    DOI: 10.1016/j.resourpol.2023.103850
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420723005615
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2023.103850?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Yi & Zhang, Zhouyi & Zhang, Yijun & Cheng, Jinhua, 2022. "Technological innovation and supply of critical metals: A perspective of industrial chains," Resources Policy, Elsevier, vol. 79(C).
    2. Stephane Ruiz-Coupeau & Björn Jürgens & Michaela Keßelring & Victor Herrero-Solana, 2020. "Sustainability in Mineral Exploration—Exploring Less Invasive Technologies via Patent Analysis," Sustainability, MDPI, vol. 12(22), pages 1-18, November.
    3. Valero, Alicia & Valero, Antonio & Calvo, Guiomar & Ortego, Abel, 2018. "Material bottlenecks in the future development of green technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 178-200.
    4. Islam, Md. Monirul & Sohag, Kazi & Alam, Md. Mahmudul, 2022. "Mineral import demand and clean energy transitions in the top mineral-importing countries," Resources Policy, Elsevier, vol. 78(C).
    5. Ren, Kaipeng & Tang, Xu & Wang, Peng & Willerström, Jakob & Höök, Mikael, 2021. "Bridging energy and metal sustainability: Insights from China’s wind power development up to 2050," Energy, Elsevier, vol. 227(C).
    6. Liu, Laibao & Wang, Zheng & Wang, Yang & Wang, Jun & Chang, Rui & He, Gang & Tang, Wenjun & Gao, Ziqi & Li, Jiangtao & Liu, Changyi & Zhao, Lin & Qin, Dahe & Li, Shuangcheng, 2020. "Optimizing wind/solar combinations at finer scales to mitigate renewable energy variability in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    7. Li, Guangpei & Wang, Xiaoyu & Su, Shibin & Su, Yuan, 2019. "How green technological innovation ability influences enterprise competitiveness," Technology in Society, Elsevier, vol. 59(C).
    8. repec:bla:scandj:v:99:y:1997:i:1:p:119-27 is not listed on IDEAS
    9. Tilton, John E. & Crowson, Phillip C.F. & DeYoung, John H. & Eggert, Roderick G. & Ericsson, Magnus & Guzmán, Juan Ignacio & Humphreys, David & Lagos, Gustavo & Maxwell, Philip & Radetzki, Marian & Si, 2018. "Public policy and future mineral supplies," Resources Policy, Elsevier, vol. 57(C), pages 55-60.
    10. Rolf Färe & Emili Grifell‐Tatjé & Shawna Grosskopf & C. A. Knox Lovell, 1997. "Biased Technical Change and the Malmquist Productivity Index," Scandinavian Journal of Economics, Wiley Blackwell, vol. 99(1), pages 119-127, March.
    11. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    12. Shao, Liuguo & He, Yingying & Feng, Chao & Zhang, Shijing, 2016. "An empirical analysis of total-factor productivity in 30 sub-sub-sectors of China's nonferrous metal industry," Resources Policy, Elsevier, vol. 50(C), pages 264-269.
    13. Song, Malin & Zheng, Wanping & Wang, Shuhong, 2017. "Measuring green technology progress in large-scale thermoelectric enterprises based on Malmquist–Luenberger life cycle assessment," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 261-269.
    14. Fare, Rolf & Shawna Grosskopf & Mary Norris & Zhongyang Zhang, 1994. "Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries," American Economic Review, American Economic Association, vol. 84(1), pages 66-83, March.
    15. Sun, Honghang & Zhi, Qiang & Wang, Yibo & Yao, Qiang & Su, Jun, 2014. "China’s solar photovoltaic industry development: The status quo, problems and approaches," Applied Energy, Elsevier, vol. 118(C), pages 221-230.
    16. Aydin, Hamit & Tilton, John E., 2000. "Mineral endowment, labor productivity, and comparative advantage in mining," Resource and Energy Economics, Elsevier, vol. 22(4), pages 281-293, October.
    17. Fukuyama, Hirofumi & Weber, William L., 2009. "A directional slacks-based measure of technical inefficiency," Socio-Economic Planning Sciences, Elsevier, vol. 43(4), pages 274-287, December.
    18. Silva, Thiago Christiano & Tabak, Benjamin Miranda & Cajueiro, Daniel Oliveira & Dias, Marina Villas Boas, 2017. "A comparison of DEA and SFA using micro- and macro-level perspectives: Efficiency of Chinese local banks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 216-223.
    19. Lin, Boqiang & Chen, Yufang & Zhang, Guoliang, 2017. "Technological progress and rebound effect in China's nonferrous metals industry: An empirical study," Energy Policy, Elsevier, vol. 109(C), pages 520-529.
    20. Saleem H. Ali & Damien Giurco & Nicholas Arndt & Edmund Nickless & Graham Brown & Alecos Demetriades & Ray Durrheim & Maria Amélia Enriquez & Judith Kinnaird & Anna Littleboy & Lawrence D. Meinert & R, 2017. "Correction: Corrigendum: Mineral supply for sustainable development requires resource governance," Nature, Nature, vol. 547(7662), pages 246-246, July.
    21. Wu, Yunna & Ke, Yiming & Zhang, Ting & Liu, Fangtong & Wang, Jing, 2018. "Performance efficiency assessment of photovoltaic poverty alleviation projects in China: A three-phase data envelopment analysis model," Energy, Elsevier, vol. 159(C), pages 599-610.
    22. Thomas Wiedmann & Heinz Schandl & Daniel Moran, 2015. "The footprint of using metals: new metrics of consumption and productivity," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 17(3), pages 369-388, July.
    23. Saleem H. Ali & Damien Giurco & Nicholas Arndt & Edmund Nickless & Graham Brown & Alecos Demetriades & Ray Durrheim & Maria Amélia Enriquez & Judith Kinnaird & Anna Littleboy & Lawrence D. Meinert & R, 2017. "Mineral supply for sustainable development requires resource governance," Nature, Nature, vol. 543(7645), pages 367-372, March.
    24. Zhang, Zhouyi & Song, Yi & Cheng, Jinhua & Zhang, Yijun, 2023. "Effects of heterogeneous ICT on critical metal supply: A differentiated perspective on primary and secondary supply," Resources Policy, Elsevier, vol. 83(C).
    25. Pérez-Rincón, Mario & Vargas-Morales, Julieth & Martinez-Alier, Joan, 2019. "Mapping and Analyzing Ecological Distribution Conflicts in Andean Countries," Ecological Economics, Elsevier, vol. 157(C), pages 80-91.
    26. Zhu, Yongguang & Xu, Deyi & Ali, Saleem H. & Cheng, Jinhua, 2021. "A hybrid assessment model for mineral resource availability potentials," Resources Policy, Elsevier, vol. 74(C).
    27. Song, Yi & Zhang, Yangxueying & Zhang, Yijun, 2022. "Economic and environmental influences of resource tax: Firm-level evidence from China," Resources Policy, Elsevier, vol. 77(C).
    28. Yu, Shiwei & Duan, Haoran & Cheng, Jinhua, 2021. "An evaluation of the supply risk for China's strategic metallic mineral resources," Resources Policy, Elsevier, vol. 70(C).
    29. Tovar, Beatriz & Javier Ramos-Real, Francisco & de Almeida, Edmar Fagundes, 2011. "Firm size and productivity. Evidence from the electricity distribution industry in Brazil," Energy Policy, Elsevier, vol. 39(2), pages 826-833, February.
    30. Feng, Chao & Huang, Jian-Bai & Wang, Miao, 2018. "The driving forces and potential mitigation of energy-related CO2 emissions in China's metal industry," Resources Policy, Elsevier, vol. 59(C), pages 487-494.
    31. Song, Yi & Cheng, Jinhua & Zhang, Yijun & Dai, Tao & Huang, Jianbai, 2021. "Direct and indirect effects of heterogeneous technical change on metal consumption intensity: Evidence from G7 and BRICS countries," Resources Policy, Elsevier, vol. 71(C).
    32. Upstill, Garrett & Hall, Peter, 2006. "Innovation in the minerals industry: Australia in a global context," Resources Policy, Elsevier, vol. 31(3), pages 137-145, September.
    33. Canh, Nguyen Phuc & Schinckus, Christophe & Thanh, Su Dinh, 2020. "The natural resources rents: Is economic complexity a solution for resource curse?," Resources Policy, Elsevier, vol. 69(C).
    34. Zhong, Mei-Rui & Xiao, Shun-Li & Zou, Han & Zhang, Yi-Jun & Song, Yi, 2021. "The effects of technical change on carbon intensity in China’s non-ferrous metal industry," Resources Policy, Elsevier, vol. 73(C).
    35. Kumar, Sanjay & Kumar, Rakesh & Bandopadhyay, Amitava, 2006. "Innovative methodologies for the utilisation of wastes from metallurgical and allied industries," Resources, Conservation & Recycling, Elsevier, vol. 48(4), pages 301-314.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Yi & Bai, Wenbo & Zhang, Yijun, 2024. "Resilience assessment of trade network in copper industry chain and the risk resistance capacity of core countries: Based on complex network," Resources Policy, Elsevier, vol. 92(C).
    2. Liu, Yang & Wu, Ailing & Wang, Jianda & Taghizadeh-Hesary, Farhad & Dong, Xiucheng, 2024. "Green growth in the global south: How does metallic minerals affect GTFP enhancement?," Resources Policy, Elsevier, vol. 88(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Yi & Zhang, Zhouyi & Zhang, Yijun & Cheng, Jinhua, 2022. "Technological innovation and supply of critical metals: A perspective of industrial chains," Resources Policy, Elsevier, vol. 79(C).
    2. Zhong, Mei-Rui & Xiao, Shun-Li & Zou, Han & Zhang, Yi-Jun & Song, Yi, 2021. "The effects of technical change on carbon intensity in China’s non-ferrous metal industry," Resources Policy, Elsevier, vol. 73(C).
    3. Honma, Satoshi & Ushifusa, Yoshiaki & Okamura, Soyoka & Vandercamme, Lilu, 2023. "Measuring carbon emissions performance of Japan's metal industry: Energy inputs, agglomeration, and the potential for green recovery reduction," Resources Policy, Elsevier, vol. 82(C).
    4. Matheus L. C. M. Henckens, 2022. "The Energy Transition and Energy Equity: A Compatible Combination?," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    5. Islam, Md. Monirul & Sohag, Kazi & Mariev, Oleg, 2023. "Geopolitical risks and mineral-driven renewable energy generation in China: A decomposed analysis," Resources Policy, Elsevier, vol. 80(C).
    6. Ahmad, Shabbir & Steen, John & Ali, Saleem & Valenta, Rick, 2023. "Carbon-adjusted efficiency and technology gaps in gold mining," Resources Policy, Elsevier, vol. 81(C).
    7. Song, Huiling & Wang, Chang & Lei, Xiaojie & Zhang, Hongwei, 2022. "Dynamic dependence between main-byproduct metals and the role of clean energy market," Energy Economics, Elsevier, vol. 108(C).
    8. Le Boulzec, Hugo & Delannoy, Louis & Andrieu, Baptiste & Verzier, François & Vidal, Olivier & Mathy, Sandrine, 2022. "Dynamic modeling of global fossil fuel infrastructure and materials needs: Overcoming a lack of available data," Applied Energy, Elsevier, vol. 326(C).
    9. Ajayi, Victor & Anaya, Karim & Pollitt, Michael, 2022. "Incentive regulation, productivity growth and environmental effects: the case of electricity networks in Great Britain," Energy Economics, Elsevier, vol. 115(C).
    10. Feng, Chao & Huang, Jian-Bai & Wang, Miao, 2019. "The sustainability of China’s metal industries: features, challenges and future focuses," Resources Policy, Elsevier, vol. 60(C), pages 215-224.
    11. Bresciani, Stefano & Puertas, Rosa & Ferraris, Alberto & Santoro, Gabriele, 2021. "Innovation, environmental sustainability and economic development: DEA-Bootstrap and multilevel analysis to compare two regions," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    12. Castillo, Emilio, 2021. "The impacts of profit-based royalties on early-stage mineral exploration," Resources Policy, Elsevier, vol. 73(C).
    13. Valentin Zelenyuk, 2023. "Productivity analysis: roots, foundations, trends and perspectives," Journal of Productivity Analysis, Springer, vol. 60(3), pages 229-247, December.
    14. Wenhan Ren & Jing Ni & Wen Jiao & Yan Li, 2023. "Explore the key factors of sustainable development: A bibliometric and visual analysis of technological progress," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(1), pages 492-509, February.
    15. Henriques, Carla Oliveira & Lima, Alexandre & Nguyen, Duc Khuong & Neves, Maria Elisabete, 2024. "Assessing the vulnerability of oil-dependent countries in Europe," Energy Economics, Elsevier, vol. 133(C).
    16. Osorio-Aravena, Juan Carlos & Aghahosseini, Arman & Bogdanov, Dmitrii & Caldera, Upeksha & Ghorbani, Narges & Mensah, Theophilus Nii Odai & Khalili, Siavash & Muñoz-Cerón, Emilio & Breyer, Christian, 2021. "The impact of renewable energy and sector coupling on the pathway towards a sustainable energy system in Chile," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    17. Xie, Bai-Chen & Ni, Kang-Kang & O'Neill, Eoghan & Li, Hong-Zhou, 2021. "The scale effect in China's power grid sector from the perspective of malmquist total factor productivity analysis," Utilities Policy, Elsevier, vol. 69(C).
    18. Hunt, C. & Romero, J. & Jara, J. & Lagos, G., 2021. "Copper demand forecasts and predictions of future scarcity," Resources Policy, Elsevier, vol. 73(C).
    19. Liang, Yanan & Kleijn, René & van der Voet, Ester, 2023. "Increase in demand for critical materials under IEA Net-Zero emission by 2050 scenario," Applied Energy, Elsevier, vol. 346(C).
    20. Pierrick Jan & Markus Lips & Michel Dumondel, 2012. "Total factor productivity change of Swiss dairy farms in the mountain region in the period 1999 to 2008," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement, INRA Department of Economics, vol. 93(3), pages 273-298.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:85:y:2023:i:pa:s0301420723005615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.