IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v43y2005i4p375-390.html
   My bibliography  Save this article

Life cycle energy impacts of automotive liftgate inner

Author

Listed:
  • Das, Sujit

Abstract

This paper compares the life cycle energy use of a cast-aluminum, rear liftgate inner and a conventional, stamped steel liftgate inner used in a minivan. Using the best available aggregate life cycle inventory data and a simple spreadsheet-level analysis, energy comparisons were made at both the single-vehicle and vehicle-fleet levels. Since the product manufacture and use are distributed over long periods of time that, in a fleet, are not simple linear combinations of single product life cycles. Thus, it is all the products in use over a period of time, rather than a single product, that are more appropriate for the life cycle analysis. Using a set of consistent data, analyses also examine sensitivity to the level of analysis and the assumptions to determine the most favorable materials with respect to life cycle energy benefits.

Suggested Citation

  • Das, Sujit, 2005. "Life cycle energy impacts of automotive liftgate inner," Resources, Conservation & Recycling, Elsevier, vol. 43(4), pages 375-390.
  • Handle: RePEc:eee:recore:v:43:y:2005:i:4:p:375-390
    DOI: 10.1016/j.resconrec.2004.07.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344904001326
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2004.07.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frank Field & Randolph Kirchain & Joel Clark, 2000. "Life‐Cycle Assessment and Temporal Distributions of Emissions: Developing a Fleet‐Based Analysis," Journal of Industrial Ecology, Yale University, vol. 4(2), pages 71-91, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Wenbin & Cleaver, Christopher J. & Dunant, Cyrille F. & Allwood, Julian M. & Lin, Jianguo, 2023. "Cost, range anxiety and future electricity supply: A review of how today's technology trends may influence the future uptake of BEVs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barbara V. Kasulaitis & Callie W. Babbitt & Andrew K. Krock, 2019. "Dematerialization and the Circular Economy: Comparing Strategies to Reduce Material Impacts of the Consumer Electronic Product Ecosystem," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 119-132, February.
    2. Xiong, Siqin & Wang, Yunshi & Bai, Bo & Ma, Xiaoming, 2021. "A hybrid life cycle assessment of the large-scale application of electric vehicles," Energy, Elsevier, vol. 216(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:43:y:2005:i:4:p:375-390. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.