IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v127y2017icp76-84.html
   My bibliography  Save this article

Environmental impact of voluntary extended producer responsibility: The case of carpet recycling

Author

Listed:
  • Choi, Taelim

Abstract

The extended producer responsibility (EPR) has become a focal strategy for improving the efficient use of resources and reducing the environmental burden. Carpet recycling is a case of the market-based EPR approach implemented in the United States. Historically, public and private sectors have reached an agreement on building a voluntary carpet recycling system by initiating business-driven recycling programs that fit the individual strategies of firms. This institutional context has promoted diversified recycling systems across the U.S including the vertically integrated or out-sourced recycling systems. The study strives to understand how the economic and environmental impact would differ according to responsible firm’s strategies under the principle of voluntary extended producer responsibility. Specifically, we evaluate the life-cycle impact of carpet recycling systems through environmental input-output modeling at a regional scale. The simulation compares the life-cycle impacts between a vertically-integrated recycling system of production of reclaimed nylon 6 fiber and an out-sourced recycling system of production of recycled carpet padding. The result demonstrates the benefits of energy savings and greenhouse gas emissions significantly differ according to recycling systems. A large portion of environmental benefits is attributed to the energy savings in the process of reclaiming nylon 6 of the vertically integrated system.

Suggested Citation

  • Choi, Taelim, 2017. "Environmental impact of voluntary extended producer responsibility: The case of carpet recycling," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 76-84.
  • Handle: RePEc:eee:recore:v:127:y:2017:i:c:p:76-84
    DOI: 10.1016/j.resconrec.2017.08.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344917302689
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2017.08.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duchin, Faye, 1990. "The conversion of biological materials and wastes to useful products," Structural Change and Economic Dynamics, Elsevier, vol. 1(2), pages 243-261, December.
    2. Satish Joshi, 1999. "Product Environmental Life‐Cycle Assessment Using Input‐Output Techniques," Journal of Industrial Ecology, Yale University, vol. 3(2‐3), pages 95-120, April.
    3. Jennifer Nash & Christopher Bosso, 2013. "Extended Producer Responsibility in the United States," Journal of Industrial Ecology, Yale University, vol. 17(2), pages 175-185, April.
    4. Turner, David A. & Williams, Ian D. & Kemp, Simon, 2015. "Greenhouse gas emission factors for recycling of source-segregated waste materials," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 186-197.
    5. Shinichiro Nakamura & Yasushi Kondo, 2002. "Input‐Output Analysis of Waste Management," Journal of Industrial Ecology, Yale University, vol. 6(1), pages 39-63, January.
    6. Sangwon Suh & Shigemi Kagawa, 2005. "Industrial ecology and input-output economics: an introduction," Economic Systems Research, Taylor & Francis Journals, vol. 17(4), pages 349-364.
    7. João F. D. Rodrigues & António Lorena & Inês Costa & Paulo Ribeiro & Paulo Ferrão, 2016. "An Input-Output Model of Extended Producer Responsibility," Journal of Industrial Ecology, Yale University, vol. 20(6), pages 1273-1283, December.
    8. Lester Lave & Noellette Conway‐Schempf & James Harvey & Deanna Hart & Timothy Bee & Christopher MacCracken, 1998. "Recycling Postconsumer Nylon Carpet," Journal of Industrial Ecology, Yale University, vol. 2(1), pages 117-126, January.
    9. Nancey Green Leigh & Taelim Choi & Nathanael Z. Hoelzel, 2012. "New Insights into Electronic Waste Recycling in Metropolitan Areas," Journal of Industrial Ecology, Yale University, vol. 16(6), pages 940-950, December.
    10. Leontief, Wassily, 1970. "Environmental Repercussions and the Economic Structure: An Input-Output Approach," The Review of Economics and Statistics, MIT Press, vol. 52(3), pages 262-271, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jakob T. Pruess, 2023. "Unraveling the complexity of extended producer responsibility policy mix design, implementation, and transfer dynamics in the European Union," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1500-1520, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dilekli, Naci & Cazcarro, Ignacio, 2019. "Testing the SDG targets on water and sanitation using the world trade model with a waste, wastewater, and recycling framework," Ecological Economics, Elsevier, vol. 165(C), pages 1-1.
    2. Maxime Agez & Guillaume Majeau‐Bettez & Manuele Margni & Anders H. Strømman & Réjean Samson, 2020. "Lifting the veil on the correction of double counting incidents in hybrid life cycle assessment," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 517-533, June.
    3. Hasegawa Ryoji & Hirofumi Nakayama & Takayuki Shimoaka, 2017. "Analyzing material flow and value added associated with non-metallic mineral wastes in Japan," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 6(1), pages 1-15, December.
    4. Taelim Choi & Randall W. Jackson & Nancey Green Leigh & Christa D. Jensen, 2011. "A Baseline Input—Output Model with Environmental Accounts (IOEA) Applied to E-Waste Recycling," International Regional Science Review, , vol. 34(1), pages 3-33, January.
    5. Nakamura, Shinichiro, 1999. "An interindustry approach to analyzing economic and environmental effects of the recycling of waste," Ecological Economics, Elsevier, vol. 28(1), pages 133-145, January.
    6. Stanislav Shmelev & Harrison Roger Brook, 2021. "Macro Sustainability across Countries: Key Sector Environmentally Extended Input-Output Analysis," Sustainability, MDPI, vol. 13(21), pages 1-46, October.
    7. Edgar Battand Towa Kouokam & Vanessa Zeller & Wouter Achten, 2019. "Input-output models and waste management analysis: A critical review," ULB Institutional Repository 2013/359535, ULB -- Universite Libre de Bruxelles.
    8. Cholapat Jongdeepaisal & Seigo Nasu, 2018. "Economic Impact Evaluation of a Biomass Power Plant Using a Technical Coefficient Pre-Adjustment in Hybrid Input-Output Analysis," Energies, MDPI, vol. 11(3), pages 1-11, March.
    9. Kagawa, Shigemi & Nakamura, Shinichiro & Inamura, Hajime & Yamada, Masato, 2007. "Measuring spatial repercussion effects of regional waste management," Resources, Conservation & Recycling, Elsevier, vol. 51(1), pages 141-174.
    10. Stanislav Edward Shmelev (ODID), "undated". "Environmentally Extended Input-Output Analysis of the UK Economy: Key Sector Analysis," QEH Working Papers qehwps183, Queen Elizabeth House, University of Oxford.
    11. Darian McBain & Ali Alsamawi, 2014. "Quantitative accounting for social economic indicators," Natural Resources Forum, Blackwell Publishing, vol. 38(3), pages 193-202, August.
    12. Lin, Chen, 2009. "Hybrid input-output analysis of wastewater treatment and environmental impacts: A case study for the Tokyo Metropolis," Ecological Economics, Elsevier, vol. 68(7), pages 2096-2105, May.
    13. Nuri Cihat Onat & Murat Kucukvar & Omer Tatari, 2014. "Towards Life Cycle Sustainability Assessment of Alternative Passenger Vehicles," Sustainability, MDPI, vol. 6(12), pages 1-38, December.
    14. Jesper Munksgaard & Manfred Lenzen & Thomas C. Jensen & Lise-Lotte Pade, 2005. "Transport Energy Embodied in Consumer Goods: A Hybrid Life-Cycle Analysis," Energy & Environment, , vol. 16(2), pages 283-301, March.
    15. Wang, Changbo & Malik, Arunima & Wang, Yafei & Chang, Yuan & Pang, Mingyue & Zhou, Dequn, 2020. "Understanding the resource-use and environmental impacts of bioethanol production in China based on a MRIO-based hybrid LCA model," Energy, Elsevier, vol. 203(C).
    16. Xia, Yan & Fan, Ying & Yang, Cuihong, 2015. "Assessing the impact of foreign content in China’s exports on the carbon outsourcing hypothesis," Applied Energy, Elsevier, vol. 150(C), pages 296-307.
    17. Asuka Yamakawa & Glen Peters, 2009. "Using Time-Series To Measure Uncertainty In Environmental Input-Output Analysis," Economic Systems Research, Taylor & Francis Journals, vol. 21(4), pages 337-362.
    18. Jean Pierre Doussoulin & Mariana Bittencourt, 2018. "Analysing the circular economy opportunities in the French construction sector related to the sustainable supply chain: a waste input-output analysis," Post-Print hal-02562227, HAL.
    19. Court, Christa D., 2012. "Enhancing U.S. hazardous waste accounting through economic modeling," Ecological Economics, Elsevier, vol. 83(C), pages 79-89.
    20. Ciprian Cimpan & Eivind Lekve Bjelle & Anders Hammer Strømman, 2021. "Plastic packaging flows in Europe: A hybrid input‐output approach," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1572-1587, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:127:y:2017:i:c:p:76-84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.