IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v122y2017icp362-372.html
   My bibliography  Save this article

Analysis of energy use and emissions of greenhouse gases, metals and organic substances from construction materials used for artificial turf

Author

Listed:
  • Magnusson, Simon
  • Mácsik, Josef

Abstract

This study applied a life cycle analysis approach to identify significant posts for energy and greenhouse gas (GHG) emissions associated with construction, use and removal of an artificial turf field. A chemical analysis of infills was conducted to describe leachability of metals and organic substances. The infill types studied were recycled tires (RT), virgin thermoplastic elastomers (TPE), virgin ethylene propylene diene monomer (EPDM) and recycled EPDM (R-EPDM) from cables and automotive mats. The result shows that energy use and GHG emissions of an artificial turf field significantly correlates with material choice, maintenance and management of removed turf. Energy use and GHG emissions for infills was highest for TPE followed by EPDM. In summary, use of recycled material as infill, reuse of soil and rock on site and reuse of removed turf and infill could reduce energy use and GHG emissions. Leachates from RT and R-EPDM contained detectable concentrations of zinc, which was relatively high from R-EPDM. Organic substances, harmful for aquatic environments and/or humans were detected in all leachates but in highest concentration from R-EPDM followed by EPDM. In the literature, risk assessments focused predominantly on RT while assessments of other infills was less extensive or was missing. The result in this article stressed the need to include all infill types in risk assessments. Previous environmental risk assessments based on field measurements concluded risks with infills to be small or minimal. However, since these assessments are few, this study suggested verification of those results by field measurements.

Suggested Citation

  • Magnusson, Simon & Mácsik, Josef, 2017. "Analysis of energy use and emissions of greenhouse gases, metals and organic substances from construction materials used for artificial turf," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 362-372.
  • Handle: RePEc:eee:recore:v:122:y:2017:i:c:p:362-372
    DOI: 10.1016/j.resconrec.2017.03.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344917300861
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2017.03.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Williams, Thomas G.J.L. & Heidrich, Oliver & Sallis, Paul J., 2010. "A case study of the open-loop recycling of mixed plastic waste for use in a sports-field drainage system," Resources, Conservation & Recycling, Elsevier, vol. 55(2), pages 118-128.
    2. Hossain, Md. Uzzal & Poon, Chi Sun & Lo, Irene M.C. & Cheng, Jack C.P., 2016. "Comparative environmental evaluation of aggregate production from recycled waste materials and virgin sources by LCA," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 67-77.
    3. Brian T. Pavilonis & Clifford P. Weisel & Brian Buckley & Paul J. Lioy, 2014. "Bioaccessibility and Risk of Exposure to Metals and SVOCs in Artificial Turf Field Fill Materials and Fibers," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 44-55, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lianne Foti & Lance Warwick & Eric Lyons & Sonia Dhaliwal & Michael Alcorn, 2023. "Knowledge Transfer and Innovation: Universities as Catalysts for Sustainable Decision Making in Industry," Sustainability, MDPI, vol. 15(14), pages 1-11, July.
    2. Anna M. Grabiec & Jeonghyun Kim & Andrzej Ubysz & Pilar Bilbao, 2021. "Some Remarks towards a Better Understanding of the Use of Concrete Recycled Aggregate: A Review," Sustainability, MDPI, vol. 13(23), pages 1-19, December.
    3. Anna Furberg & Rickard Arvidsson & Sverker Molander, 2022. "A practice‐based framework for defining functional units in comparative life cycle assessments of materials," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 718-730, June.
    4. Seong-Jun Yang & Ji-Young Eom & Myung-Jin Lee & Dae-Hwan Hwang & Won-Bin Park & Young-Min Wie & Ki-Gang Lee & Kang-Hoon Lee, 2023. "Comparative Environmental Evaluation of Sewage Sludge Treatment and Aggregate Production Process by Life Cycle Assessment," Sustainability, MDPI, vol. 16(1), pages 1-19, December.
    5. Dong Yang & Mengyuan Dang & Lingwen Sun & Feng Han & Feng Shi & Hongbo Zhang & Hongjun Zhang, 2021. "A System Dynamics Model for Urban Residential Building Stock towards Sustainability: The Case of Jinan, China," IJERPH, MDPI, vol. 18(18), pages 1-23, September.
    6. Wang, Jianliang & Liu, Mingming & McLellan, Benjamin C. & Tang, Xu & Feng, Lianyong, 2017. "Environmental impacts of shale gas development in China: A hybrid life cycle analysis," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 38-45.
    7. Toniolo, Sara & Mazzi, Anna & Niero, Monia & Zuliani, Filippo & Scipioni, Antonio, 2013. "Comparative LCA to evaluate how much recycling is environmentally favourable for food packaging," Resources, Conservation & Recycling, Elsevier, vol. 77(C), pages 61-68.
    8. Maja Kępniak & Paweł Łukowski, 2024. "Multicriteria Analysis of Cement Mortar with Recycled Sand," Sustainability, MDPI, vol. 16(5), pages 1-13, February.
    9. Bryce, James & Brodie, Stefanie & Parry, Tony & Lo Presti, Davide, 2017. "A systematic assessment of road pavement sustainability through a review of rating tools," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 108-118.
    10. Ehsan Momeni & Fereydoon Omidinasab & Ahmad Dalvand & Vahid Goodarzimehr & Abas Eskandari, 2022. "Flexural Strength of Concrete Beams Made of Recycled Aggregates: An Experimental and Soft Computing-Based Study," Sustainability, MDPI, vol. 14(18), pages 1-20, September.
    11. Jianguo Chen & Yangyue Su & Hongyun Si & Jindao Chen, 2018. "Managerial Areas of Construction and Demolition Waste: A Scientometric Review," IJERPH, MDPI, vol. 15(11), pages 1-20, October.
    12. Hossain, Md. Uzzal & Poon, Chi Sun & Lo, Irene M.C. & Cheng, Jack C.P., 2017. "Comparative LCA on using waste materials in the cement industry: A Hong Kong case study," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 199-208.
    13. Toniolo, Sara & Mazzi, Anna & Pieretto, Chiara & Scipioni, Antonio, 2017. "Allocation strategies in comparative life cycle assessment for recycling: Considerations from case studies," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 249-261.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:122:y:2017:i:c:p:362-372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.