IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v122y2017icp126-134.html
   My bibliography  Save this article

Improved life cycle modelling of benefits from sewage sludge anaerobic digestion and land application

Author

Listed:
  • Heimersson, Sara
  • Svanström, Magdalena
  • Cederberg, Christel
  • Peters, Gregory

Abstract

Nitrogen, phosphorus and organic matter are valuable resources in sewage sludge. Life cycle assessment (LCA) can be useful for comparing the potential environmental risks of sludge management strategies to their potential environmental benefits. With growing interest in resource recovery from sludge, there is an increasing need to properly account for the benefits that can be achieved, and to handle the multi-functionality issues that then arise in LCAs. So far, both of these aspects have often been handled in a generic and seemingly arbitrary way.

Suggested Citation

  • Heimersson, Sara & Svanström, Magdalena & Cederberg, Christel & Peters, Gregory, 2017. "Improved life cycle modelling of benefits from sewage sludge anaerobic digestion and land application," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 126-134.
  • Handle: RePEc:eee:recore:v:122:y:2017:i:c:p:126-134
    DOI: 10.1016/j.resconrec.2017.01.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344917300277
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2017.01.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Linderholm, Kersti & Tillman, Anne-Marie & Mattsson, Jan Erik, 2012. "Life cycle assessment of phosphorus alternatives for Swedish agriculture," Resources, Conservation & Recycling, Elsevier, vol. 66(C), pages 27-39.
    2. Cherubini, Francesco & Strømman, Anders Hammer & Ulgiati, Sergio, 2011. "Influence of allocation methods on the environmental performance of biorefinery products—A case study," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 1070-1077.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kossińska, Nina & Krzyżyńska, Renata & Ghazal, Heba & Jouhara, Hussam, 2023. "Hydrothermal carbonisation of sewage sludge and resulting biofuels as a sustainable energy source," Energy, Elsevier, vol. 275(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nancy Diaz-Elsayed & Jiayi Hua & Nader Rezaei & Qiong Zhang, 2023. "A Decision Framework for Designing Sustainable Wastewater-Based Resource Recovery Schemes," Sustainability, MDPI, vol. 15(4), pages 1-27, February.
    2. Arianne Provost‐Savard & Guillaume Majeau‐Bettez, 2024. "Substitution modeling can coherently be used in attributional life cycle assessments," Journal of Industrial Ecology, Yale University, vol. 28(3), pages 410-425, June.
    3. Puca, Antonio & Carrano, Marco & Liu, Gengyuan & Musella, Dimitri & Ripa, Maddalena & Viglia, Silvio & Ulgiati, Sergio, 2017. "Energy and eMergy assessment of the production and operation of a personal computer," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 124-136.
    4. Nariê Rinke Dias de Souza & Bruno Colling Klein & Mateus Ferreira Chagas & Otavio Cavalett & Antonio Bonomi, 2021. "Towards Comparable Carbon Credits: Harmonization of LCA Models of Cellulosic Biofuels," Sustainability, MDPI, vol. 13(18), pages 1-17, September.
    5. Julia Wenger & Georg Jäger & Annukka Näyhä & Simon Plakolb & Paul Erich Krassnitzer & Tobias Stern, 2024. "Exploring potential diffusion pathways of biorefinery innovations—An agent‐based simulation approach for facilitating shared value creation," Business Strategy and the Environment, Wiley Blackwell, vol. 33(5), pages 4652-4693, July.
    6. Reijnders, L., 2014. "Phosphorus resources, their depletion and conservation, a review," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 32-49.
    7. Vance, C. & Sweeney, J. & Murphy, F., 2022. "Space, time, and sustainability: The status and future of life cycle assessment frameworks for novel biorefinery systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    8. Theobald, Tim F.H. & Schipper, Mark & Kern, Jürgen, 2016. "Phosphorus flows in Berlin-Brandenburg, a regional flow analysis," Resources, Conservation & Recycling, Elsevier, vol. 112(C), pages 1-14.
    9. Julia Wenger & Stefan Pichler & Annukka Näyhä & Tobias Stern, 2022. "Practitioners’ Perceptions of Co-Product Allocation Methods in Biorefinery Development—A Case Study of the Austrian Pulp and Paper Industry," Sustainability, MDPI, vol. 14(5), pages 1-16, February.
    10. Senthilkumar, Kalimuthu & Mollier, Alain & Delmas, Magalie & Pellerin, Sylvain & Nesme, Thomas, 2014. "Phosphorus recovery and recycling from waste: An appraisal based on a French case study," Resources, Conservation & Recycling, Elsevier, vol. 87(C), pages 97-108.
    11. Manfroni, Michele & Bukkens, Sandra G.F. & Giampietro, Mario, 2022. "Securing fuel demand with unconventional oils: A metabolic perspective," Energy, Elsevier, vol. 261(PB).
    12. Vadenbo, Carl & Guillén-Gosálbez, Gonzalo & Saner, Dominik & Hellweg, Stefanie, 2014. "Multi-objective optimization of waste and resource management in industrial networks – Part II: Model application to the treatment of sewage sludge," Resources, Conservation & Recycling, Elsevier, vol. 89(C), pages 41-51.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:122:y:2017:i:c:p:126-134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.