IDEAS home Printed from https://ideas.repec.org/a/eee/pubeco/v227y2023ics0047272723001858.html
   My bibliography  Save this article

Bitcoin and carbon dioxide emissions: Evidence from daily production decisions

Author

Listed:
  • Papp, Anna
  • Almond, Douglas
  • Zhang, Shuang

Abstract

Environmental externalities from cryptomining may be large, but have not been linked causally to mining incentives. We exploit daily variation in Bitcoin price as a natural experiment for an 86 megawatt waste coal-fired power plant with on-site cryptomining. We find that carbon emissions respond swiftly to mining incentives, with price elasticities of 0.69–0.71 in the short-run and 0.33–0.40 in the longer run. A $1 increase in Bitcoin price leads to $3.11–$6.79 in external damages from carbon emissions alone, well exceeding cryptomining’s value added (using a $190 social cost of carbon, but ignoring increased local air pollution). As cryptomining requires ever more computing power to mine a given number of blocks, our study highlights both the revitalization of US fossil assets and the need for financial industry accounting to incorporate cryptomining externalities.

Suggested Citation

  • Papp, Anna & Almond, Douglas & Zhang, Shuang, 2023. "Bitcoin and carbon dioxide emissions: Evidence from daily production decisions," Journal of Public Economics, Elsevier, vol. 227(C).
  • Handle: RePEc:eee:pubeco:v:227:y:2023:i:c:s0047272723001858
    DOI: 10.1016/j.jpubeco.2023.105003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047272723001858
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jpubeco.2023.105003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul L. Joskow, 1997. "Restructuring, Competition and Regulatory Reform in the U.S. Electricity Sector," Journal of Economic Perspectives, American Economic Association, vol. 11(3), pages 119-138, Summer.
    2. Borenstein, Severin & Bushnell, James & Wolak, Frank, 2002. "Measuring Market Inefficiencies in California's Deregulated Electricity Industry," Staff General Research Papers Archive 13136, Iowa State University, Department of Economics.
    3. Nicholas Z. Muller & Robert Mendelsohn & William Nordhaus, 2011. "Environmental Accounting for Pollution in the United States Economy," American Economic Review, American Economic Association, vol. 101(5), pages 1649-1675, August.
    4. Spyros Foteinis, 2018. "Bitcoin’s alarming carbon footprint," Nature, Nature, vol. 554(7691), pages 169-169, February.
    5. Olivier Deschênes & Michael Greenstone & Joseph S. Shapiro, 2017. "Defensive Investments and the Demand for Air Quality: Evidence from the NOx Budget Program," American Economic Review, American Economic Association, vol. 107(10), pages 2958-2989, October.
    6. Max J. Krause & Thabet Tolaymat, 2018. "Author Correction: Quantification of energy and carbon costs for mining cryptocurrencies," Nature Sustainability, Nature, vol. 1(12), pages 814-814, December.
    7. Severin Borenstein & James Bushnell, 2015. "The US Electricity Industry After 20 Years of Restructuring," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 437-463, August.
    8. Severin Borenstein & James B. Bushnell & Frank A. Wolak, 2002. "Measuring Market Inefficiencies in California's Restructured Wholesale Electricity Market," American Economic Review, American Economic Association, vol. 92(5), pages 1376-1405, December.
    9. Camilo Mora & Randi L. Rollins & Katie Taladay & Michael B. Kantar & Mason K. Chock & Mio Shimada & Erik C. Franklin, 2018. "Bitcoin emissions alone could push global warming above 2°C," Nature Climate Change, Nature, vol. 8(11), pages 931-933, November.
    10. Max J. Krause & Thabet Tolaymat, 2018. "Quantification of energy and carbon costs for mining cryptocurrencies," Nature Sustainability, Nature, vol. 1(11), pages 711-718, November.
    11. Kevin Rennert & Frank Errickson & Brian C. Prest & Lisa Rennels & Richard G. Newell & William Pizer & Cora Kingdon & Jordan Wingenroth & Roger Cooke & Bryan Parthum & David Smith & Kevin Cromar & Dela, 2022. "Comprehensive evidence implies a higher social cost of CO2," Nature, Nature, vol. 610(7933), pages 687-692, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael L. Polemis & Mike G. Tsionas, 2023. "The environmental consequences of blockchain technology: A Bayesian quantile cointegration analysis for Bitcoin," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 1602-1621, April.
    2. Hebous, Shafik & Vernon-Lin, Nate, 2024. "Cryptocarbon: How much is the corrective tax?," Energy Economics, Elsevier, vol. 138(C).
    3. Mingbo Zheng & Gen-Fu Feng & Xinxin Zhao & Chun-Ping Chang, 2023. "The transaction behavior of cryptocurrency and electricity consumption," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-18, December.
    4. Xuejia Sang & Xiaopeng Leng & Linfu Xue & Xiangjin Ran, 2022. "Based on the Time-Spatial Power-Based Cryptocurrency Miner Driving Force Model, Establish a Global CO 2 Emission Prediction Framework after China Bans Cryptocurrency," Sustainability, MDPI, vol. 14(9), pages 1-18, April.
    5. David P. Brown & Derek E. H. Olmstead, 2017. "Measuring market power and the efficiency of Alberta's restructured electricity market: An energy-only market design," Canadian Journal of Economics, Canadian Economics Association, vol. 50(3), pages 838-870, August.
    6. Brown, David P. & Eckert, Andrew & Shaffer, Blake, 2023. "Evaluating the impact of divestitures on competition: Evidence from Alberta’s wholesale electricity market," International Journal of Industrial Organization, Elsevier, vol. 89(C).
    7. Ye, Wang & Wong, Wing-Keung & Arnone, Gioia & Nassani, Abdelmohsen A. & Haffar, Mohamed & Faiz, Muhammad Fauzinudin, 2023. "Crypto currency and green investment impact on global environment: A time series analysis," International Review of Economics & Finance, Elsevier, vol. 86(C), pages 155-169.
    8. Brehm, Paul A. & Zhang, Yiyuan, 2021. "The efficiency and environmental impacts of market organization: Evidence from the Texas electricity market," Energy Economics, Elsevier, vol. 101(C).
    9. Sarker, Provash Kumer & Lau, Chi Keung Marco & Pradhan, Ashis Kumar, 2023. "Asymmetric effects of climate policy uncertainty and energy prices on bitcoin prices," Innovation and Green Development, Elsevier, vol. 2(2).
    10. Cao, Jing & Ho, Mun S. & Ma, Rong & Zhang, Yu, 2024. "Transition from plan to market: Imperfect regulations in the electricity sector of China," Journal of Comparative Economics, Elsevier, vol. 52(2), pages 509-533.
    11. Alexander Hill, 2023. "Price freezes and gas pass-through: an estimation of the price impact of electricity market restructuring," Journal of Regulatory Economics, Springer, vol. 63(1), pages 87-116, April.
    12. Le, Thanh Ha, 2023. "Quantile time-frequency connectedness between cryptocurrency volatility and renewable energy volatility during the COVID-19 pandemic and Ukraine-Russia conflicts," Renewable Energy, Elsevier, vol. 202(C), pages 613-625.
    13. Anh Ngoc Quang Huynh & Duy Duong & Tobias Burggraf & Hien Thi Thu Luong & Nam Huu Bui, 2022. "Energy Consumption and Bitcoin Market," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 29(1), pages 79-93, March.
    14. Shize Qin & Lena Klaa{ss}en & Ulrich Gallersdorfer & Christian Stoll & Da Zhang, 2020. "Bitcoin's future carbon footprint," Papers 2011.02612, arXiv.org, revised Jan 2021.
    15. Baur, Dirk G. & Oll, Josua, 2022. "Bitcoin investments and climate change: A financial and carbon intensity perspective," Finance Research Letters, Elsevier, vol. 47(PA).
    16. Zhang, Dongna & Chen, Xihui Haviour & Lau, Chi Keung Marco & Xu, Bing, 2023. "Implications of cryptocurrency energy usage on climate change," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    17. Yerushalmi, Erez & Paladini, Stefania, 2023. "Blockchain in Financial Intermediation and Beyond: What are the Main Barriers for Widespread Adoption?," CAFE Working Papers 22, Centre for Accountancy, Finance and Economics (CAFE), Birmingham City Business School, Birmingham City University.
    18. Kateryna Kononova, Anton Dek, 2019. "Bitcoin mining electricity consumption and carbon footprint," RIVISTA DI STUDI SULLA SOSTENIBILITA', FrancoAngeli Editore, vol. 0(2), pages 73-88.
    19. Podhorsky, Andrea, 2023. "Taxing bitcoin: Incentivizing the difficulty adjustment mechanism to reduce electricity usage," International Review of Financial Analysis, Elsevier, vol. 86(C).
    20. Díaz, Antonio & Esparcia, Carlos & Huélamo, Diego, 2023. "Unveiling the diversification capabilities of carbon markets in NFT portfolios," Finance Research Letters, Elsevier, vol. 58(PD).

    More about this item

    Keywords

    Bitcoin; Cryptocurrency mining; Carbon emissions; Climate change;
    All these keywords.

    JEL classification:

    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:pubeco:v:227:y:2023:i:c:s0047272723001858. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505578 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.