IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v60-61y1999i1p439-445.html
   My bibliography  Save this article

Dynamic control of a cellular-line production system under variations in the product mix

Author

Listed:
  • Kuroda, Mitsuru
  • Tomita, Takahiro
  • Maeda, Kazuhiko

Abstract

No abstract is available for this item.

Suggested Citation

  • Kuroda, Mitsuru & Tomita, Takahiro & Maeda, Kazuhiko, 1999. "Dynamic control of a cellular-line production system under variations in the product mix," International Journal of Production Economics, Elsevier, vol. 60(1), pages 439-445, April.
  • Handle: RePEc:eee:proeco:v:60-61:y:1999:i:1:p:439-445
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925-5273(98)00158-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kuroda, M. & Kawada, A., 1994. "Optimal input control for job-shop type production systems using inverse queueing network analysis," International Journal of Production Economics, Elsevier, vol. 33(1-3), pages 215-223, January.
    2. Nick T. Thomopoulos, 1967. "Line Balancing-Sequencing for Mixed-Model Assembly," Management Science, INFORMS, vol. 14(2), pages 59-75, October.
    3. Izak Duenyas, 1994. "A Simple Release Policy for Networks of Queues with Controllable Inputs," Operations Research, INFORMS, vol. 42(6), pages 1162-1171, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuroda, M. & Kawada, A., 1995. "Adaptive input control for job-shop type production systems with varying demands using inverse queueing network analysis," International Journal of Production Economics, Elsevier, vol. 41(1-3), pages 217-225, October.
    2. Giard, Vincent & Jeunet, Jully, 2010. "Optimal sequencing of mixed models with sequence-dependent setups and utility workers on an assembly line," International Journal of Production Economics, Elsevier, vol. 123(2), pages 290-300, February.
    3. Karabati, Selcuk & Sayin, Serpil, 2003. "Assembly line balancing in a mixed-model sequencing environment with synchronous transfers," European Journal of Operational Research, Elsevier, vol. 149(2), pages 417-429, September.
    4. Wendell G. Gilland, 2001. "Effective Sequencing Rules for Closed Manufacturing Networks," Operations Research, INFORMS, vol. 49(5), pages 759-770, October.
    5. Drexl, Andreas & Jordan, Carsten, 1994. "Materialflußorientierte Produktionssteuerung bei Variantenfließfertigung," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 362, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    6. Marshall L. Fisher & Christopher D. Ittner, 1999. "The Impact of Product Variety on Automobile Assembly Operations: Empirical Evidence and Simulation Analysis," Management Science, INFORMS, vol. 45(6), pages 771-786, June.
    7. Ibrahim Kucukkoc & Kadir Buyukozkan & Sule Itir Satoglu & David Z. Zhang, 2019. "A mathematical model and artificial bee colony algorithm for the lexicographic bottleneck mixed-model assembly line balancing problem," Journal of Intelligent Manufacturing, Springer, vol. 30(8), pages 2913-2925, December.
    8. Ibrahim Kucukkoc & David Z. Zhang, 2017. "Balancing of mixed-model parallel U-shaped assembly lines considering model sequences," International Journal of Production Research, Taylor & Francis Journals, vol. 55(20), pages 5958-5975, October.
    9. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2009. "Sequencing mixed-model assembly lines: Survey, classification and model critique," European Journal of Operational Research, Elsevier, vol. 192(2), pages 349-373, January.
    10. Drexl, Andreas & Kimms, Alf, 1997. "Sequencing JIT mixed-model assembly lines under station load- and part usage-constraints," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 460, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    11. Kathryn E. Caggiano & John A. Muckstadt & James A. Rappold, 2006. "Integrated Real-Time Capacity and Inventory Allocation for Reparable Service Parts in a Two-Echelon Supply System," Manufacturing & Service Operations Management, INFORMS, vol. 8(3), pages 292-319, August.
    12. Kucukkoc, Ibrahim & Zhang, David Z., 2014. "Mathematical model and agent based solution approach for the simultaneous balancing and sequencing of mixed-model parallel two-sided assembly lines," International Journal of Production Economics, Elsevier, vol. 158(C), pages 314-333.
    13. F. Tanhaie & M. Rabbani & N. Manavizadeh, 2020. "Applying available-to-promise (ATP) concept in mixed-model assembly line sequencing problems in a Make-To-Order (MTO) environment: problem extension, model formulation and Lagrangian relaxation algori," OPSEARCH, Springer;Operational Research Society of India, vol. 57(2), pages 320-346, June.
    14. Kucukkoc, Ibrahim & Li, Zixiang & Karaoglan, Aslan D. & Zhang, David Z., 2018. "Balancing of mixed-model two-sided assembly lines with underground workstations: A mathematical model and ant colony optimization algorithm," International Journal of Production Economics, Elsevier, vol. 205(C), pages 228-243.
    15. Arnd Huchzermeier & Tobias Mönch & Peter Bebersdorf, 2020. "The Fendt VarioTakt: Revolutionizing Mixed-Model Assembly Line Production," INFORMS Transactions on Education, INFORMS, vol. 20(3), pages 134-140, May.
    16. Bukchin, Yossi & Rabinowitch, Ithai, 2006. "A branch-and-bound based solution approach for the mixed-model assembly line-balancing problem for minimizing stations and task duplication costs," European Journal of Operational Research, Elsevier, vol. 174(1), pages 492-508, October.
    17. George Vairaktarakis & Janice Kim Winch, 1999. "Worker Cross-Training in Paced Assembly Lines," Manufacturing & Service Operations Management, INFORMS, vol. 1(2), pages 112-131.
    18. Lopes, Thiago Cantos & Michels, Adalberto Sato & Sikora, Celso Gustavo Stall & Molina, Rafael Gobbi & Magatão, Leandro, 2018. "Balancing and cyclically sequencing synchronous, asynchronous, and hybrid unpaced assembly lines," International Journal of Production Economics, Elsevier, vol. 203(C), pages 216-224.
    19. Li, Hui & Liu, Liming, 2006. "Production control in a two-stage system," European Journal of Operational Research, Elsevier, vol. 174(2), pages 887-904, October.
    20. Yavuz, Mesut & Tufekci, Suleyman, 2006. "A bounded dynamic programming solution to the batching problem in mixed-model just-in-time manufacturing systems," International Journal of Production Economics, Elsevier, vol. 103(2), pages 841-862, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:60-61:y:1999:i:1:p:439-445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.