IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v257y2023ics0925527322003498.html
   My bibliography  Save this article

Minimizing online retailers’ revenue loss under a time-varying willingness-to-pay distribution

Author

Listed:
  • Kazemi, Mohammad Sadegh
  • Fotopoulos, Stergios B.
  • Wang, Xinchang

Abstract

We study revenue management for an online retailer that offers a single product to customers with a time-varying willingness-to-pay (WTP) distribution. When the WTP distribution changes at an unknown time point (i.e., the change point), the original price quoted to customers may not be optimal. The retailer’s objective is to minimize his revenue loss by determining when to quote a new price to incoming customers and what the new price is. We formulate the problem as an optimization model, which is challenging to solve due to the presence of the unknown change point. To overcome this challenge, we first characterize the probability distribution of the estimated change point using maximum likelihood estimation. We then develop two pricing algorithms to solve the model by leveraging the characterized distribution. Lastly, through numerical studies, we illustrate the effectiveness of the proposed algorithms in identifying change points and recommending optimal post-change selling prices. The numerical results suggest that the proposed pricing algorithms significantly reduce the frequency of false change detection in the early stages of a selling season. The proposed pricing algorithms also outperform the benchmark pricing algorithm in reducing the retailer’s revenue loss.

Suggested Citation

  • Kazemi, Mohammad Sadegh & Fotopoulos, Stergios B. & Wang, Xinchang, 2023. "Minimizing online retailers’ revenue loss under a time-varying willingness-to-pay distribution," International Journal of Production Economics, Elsevier, vol. 257(C).
  • Handle: RePEc:eee:proeco:v:257:y:2023:i:c:s0925527322003498
    DOI: 10.1016/j.ijpe.2022.108767
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527322003498
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2022.108767?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Omar Besbes & Assaf Zeevi, 2012. "Blind Network Revenue Management," Operations Research, INFORMS, vol. 60(6), pages 1537-1550, December.
    2. Boxiao Chen, 2021. "Data‐Driven Inventory Control with Shifting Demand," Production and Operations Management, Production and Operations Management Society, vol. 30(5), pages 1365-1385, May.
    3. Alain Bensoussan & Yangyang Xie & Houmin Yan, 2019. "Joint Inventory‐Pricing Optimization with General Demands: An Alternative Approach for Concavity Preservation," Production and Operations Management, Production and Operations Management Society, vol. 28(9), pages 2390-2404, September.
    4. Rana, Rupal & Oliveira, Fernando S., 2014. "Real-time dynamic pricing in a non-stationary environment using model-free reinforcement learning," Omega, Elsevier, vol. 47(C), pages 116-126.
    5. Tilson, Vera & Zheng, Xiaobo, 2014. "Monopoly production and pricing of finitely durable goods with strategic consumers׳ fluctuating willingness to pay," International Journal of Production Economics, Elsevier, vol. 154(C), pages 217-232.
    6. Wei, Yihua & Xu, Chen & Hu, Qiying, 2013. "Transformation of optimization problems in revenue management, queueing system, and supply chain management," International Journal of Production Economics, Elsevier, vol. 146(2), pages 588-597.
    7. Arnoud V. den Boer & Bert Zwart, 2014. "Simultaneously Learning and Optimizing Using Controlled Variance Pricing," Management Science, INFORMS, vol. 60(3), pages 770-783, March.
    8. Fotopoulos, Stergios B., 2009. "The geometric convergence rate of the classical change-point estimate," Statistics & Probability Letters, Elsevier, vol. 79(2), pages 131-137, January.
    9. Yusen Xia & Jian Yang & Tingting Zhou, 2019. "Revenue management under randomly evolving economic conditions," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(1), pages 73-89, February.
    10. Netessine, Serguei, 2006. "Dynamic pricing of inventory/capacity with infrequent price changes," European Journal of Operational Research, Elsevier, vol. 174(1), pages 553-580, October.
    11. Omar Besbes & Assaf Zeevi, 2011. "On the Minimax Complexity of Pricing in a Changing Environment," Operations Research, INFORMS, vol. 59(1), pages 66-79, February.
    12. Tatsiana Levina & Yuri Levin & Jeff McGill & Mikhail Nediak, 2009. "Dynamic Pricing with Online Learning and Strategic Consumers: An Application of the Aggregating Algorithm," Operations Research, INFORMS, vol. 57(2), pages 327-341, April.
    13. J. Michael Harrison & N. Bora Keskin & Assaf Zeevi, 2012. "Bayesian Dynamic Pricing Policies: Learning and Earning Under a Binary Prior Distribution," Management Science, INFORMS, vol. 58(3), pages 570-586, March.
    14. den Boer, Arnoud V., 2015. "Tracking the market: Dynamic pricing and learning in a changing environment," European Journal of Operational Research, Elsevier, vol. 247(3), pages 914-927.
    15. Omar Besbes & Denis Sauré, 2014. "Dynamic Pricing Strategies in the Presence of Demand Shifts," Manufacturing & Service Operations Management, INFORMS, vol. 16(4), pages 513-528, October.
    16. Omar Besbes & Assaf Zeevi, 2009. "Dynamic Pricing Without Knowing the Demand Function: Risk Bounds and Near-Optimal Algorithms," Operations Research, INFORMS, vol. 57(6), pages 1407-1420, December.
    17. Arnoud V. den Boer & N. Bora Keskin, 2020. "Discontinuous Demand Functions: Estimation and Pricing," Management Science, INFORMS, vol. 66(10), pages 4516-4534, October.
    18. Yongmin Chen & Michael H. Riordan, 2008. "Price‐increasing competition," RAND Journal of Economics, RAND Corporation, vol. 39(4), pages 1042-1058, December.
    19. N. Bora Keskin & Assaf Zeevi, 2017. "Chasing Demand: Learning and Earning in a Changing Environment," Mathematics of Operations Research, INFORMS, vol. 42(2), pages 277-307, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. den Boer, Arnoud V., 2015. "Tracking the market: Dynamic pricing and learning in a changing environment," European Journal of Operational Research, Elsevier, vol. 247(3), pages 914-927.
    2. Arnoud V. den Boer & Bert Zwart, 2015. "Dynamic Pricing and Learning with Finite Inventories," Operations Research, INFORMS, vol. 63(4), pages 965-978, August.
    3. Giovanni Gatti Pinheiro & Thomas Fiig & Michael D. Wittman & Michael Defoin-Platel & Riccardo D. Jadanza, 2022. "Demand change detection in airline revenue management," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 21(6), pages 581-595, December.
    4. Qi Feng & J. George Shanthikumar, 2022. "Developing operations management data analytics," Production and Operations Management, Production and Operations Management Society, vol. 31(12), pages 4544-4557, December.
    5. Thomas Loots & Arnoud V. den Boer, 2023. "Data‐driven collusion and competition in a pricing duopoly with multinomial logit demand," Production and Operations Management, Production and Operations Management Society, vol. 32(4), pages 1169-1186, April.
    6. Yash Kanoria & Hamid Nazerzadeh, 2020. "Dynamic Reserve Prices for Repeated Auctions: Learning from Bids," Papers 2002.07331, arXiv.org.
    7. Yang, Chaolin & Xiong, Yi, 2020. "Nonparametric advertising budget allocation with inventory constraint," European Journal of Operational Research, Elsevier, vol. 285(2), pages 631-641.
    8. Omar Besbes & Denis Sauré, 2014. "Dynamic Pricing Strategies in the Presence of Demand Shifts," Manufacturing & Service Operations Management, INFORMS, vol. 16(4), pages 513-528, October.
    9. Wang Chi Cheung & David Simchi-Levi & He Wang, 2017. "Technical Note—Dynamic Pricing and Demand Learning with Limited Price Experimentation," Operations Research, INFORMS, vol. 65(6), pages 1722-1731, December.
    10. Arnoud V. den Boer & N. Bora Keskin, 2020. "Discontinuous Demand Functions: Estimation and Pricing," Management Science, INFORMS, vol. 66(10), pages 4516-4534, October.
    11. Boxiao Chen & David Simchi-Levi & Yining Wang & Yuan Zhou, 2022. "Dynamic Pricing and Inventory Control with Fixed Ordering Cost and Incomplete Demand Information," Management Science, INFORMS, vol. 68(8), pages 5684-5703, August.
    12. William L. Cooper & Tito Homem-de-Mello & Anton J. Kleywegt, 2015. "Learning and Pricing with Models That Do Not Explicitly Incorporate Competition," Operations Research, INFORMS, vol. 63(1), pages 86-103, February.
    13. Xiao, Baichun & Yang, Wei, 2021. "A Bayesian learning model for estimating unknown demand parameter in revenue management," European Journal of Operational Research, Elsevier, vol. 293(1), pages 248-262.
    14. N. Bora Keskin & Assaf Zeevi, 2014. "Dynamic Pricing with an Unknown Demand Model: Asymptotically Optimal Semi-Myopic Policies," Operations Research, INFORMS, vol. 62(5), pages 1142-1167, October.
    15. Josef Broder & Paat Rusmevichientong, 2012. "Dynamic Pricing Under a General Parametric Choice Model," Operations Research, INFORMS, vol. 60(4), pages 965-980, August.
    16. Xuejun Zhao & Ruihao Zhu & William B. Haskell, 2022. "Learning to Price Supply Chain Contracts against a Learning Retailer," Papers 2211.04586, arXiv.org.
    17. Boxiao Chen & Xiuli Chao & Cong Shi, 2021. "Nonparametric Learning Algorithms for Joint Pricing and Inventory Control with Lost Sales and Censored Demand," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 726-756, May.
    18. Athanassios N. Avramidis & Arnoud V. Boer, 2021. "Dynamic pricing with finite price sets: a non-parametric approach," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(1), pages 1-34, August.
    19. Huashuai Qu & Ilya O. Ryzhov & Michael C. Fu & Eric Bergerson & Megan Kurka & Ludek Kopacek, 2020. "Learning Demand Curves in B2B Pricing: A New Framework and Case Study," Production and Operations Management, Production and Operations Management Society, vol. 29(5), pages 1287-1306, May.
    20. Athanassios N. Avramidis, 2020. "A pricing problem with unknown arrival rate and price sensitivity," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(1), pages 77-106, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:257:y:2023:i:c:s0925527322003498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.